OJF  Vol.4 No.4 , July 2014
Automatization of Forest Fire Detection Using Geospatial Technique
Abstract: Healthy forest is the vital resource to regulate climate at a regional and global level. Forest fire has been regarded as one of the major reasons for the loss of forest and degradation of the environment. Global warming is increasing its intensity at an alarming rate. Real-time fire detection is a necessity to avoid large scale losses. Remote sensing is a quick and cheap technique for detecting and monitoring forest fires on a large scale. Advance Very Radiometer Resolution (AVHRR) has been used already for a long period for fire detection. The use of Moderate Resolution Imaging Radio Spectrometer (MODIS) for fire detection has recently preceded AVHRR and a large number of fire products are being developed. MODIS based forest fire detection and monitoring system can solve the problem of real-time forest fire monitoring. The system facilitates data acquisition, processing, reporting and feedback on the fire location information in an automated manner. It provides location information at 1 × 1 kilometer resolution on the active fires which are present during the satellite overpass twice a day. The users are provided with the information on SMS alert with fire location details, email notification, and online visualization of fire locations on website automatically. The whole processes are automated and provide better accuracy for fire detection.
Cite this paper: Gandhi, S. and Singh, T. (2014) Automatization of Forest Fire Detection Using Geospatial Technique. Open Journal of Forestry, 4, 302-309. doi: 10.4236/ojf.2014.44036.

[1]   Allard, G. B. (2003). Fire Situation in the Islamic Republic of Iran. International Forest Fire News (IFFN), 28, 88-91.

[2]   Angayarkkani, K., & Radhakrishnan, S. N. (2010). An Intelligent System for Effective Forest Fire Detection Using Spatial Data. International Journal of Computer Science and Information Security, 7, 1.

[3]   Christian, S. P. (2009). Python: Accessing near Real-Time MODIS Images and Fire Data from NASA’s Aqua and Terra Satellites.

[4]   Christopher, J., Louis, G., Luigi, B., David, R., Ivan, C., Jefferey, M., & Yoram, K. S. N. (2006). Algorithm Technical Background Document MODIS Fire Products, Version 2.3, MODIS Fire Products.

[5]   Eiji, N., Kei, K., Kenneth, J. M., & Jong Geol Park, S. N. (2007). Forest and Field Fire Search System Using MODIS Data, Paper No. 8. Journal of Advanced Computational Intelligence and Intelligent Informatics, 11.

[6]   Eric, F., & Vermote, S. N. (2011). MODIS Surface Reflectance User’s Guide, Version 1.3, MODIS Fire Products.

[7]   Giglio, L., Kendall, J. D., & Justice, C. O. (1999). Evaluation of Global Fire Detection Algorithms Using Simulated AVHRR Infrared Data. International Journal of Remote Sensing, 20, 1947-1985.

[8]   Jeffrey, T. M., Louis, G., Ivan, C., Alberto, S., Wilfrid, S., Douglas, M., Christopher, O., & Justice, S. N. (2005). Validation of MODIS Active Fire Detection Products Derived from Two Algorithms, Paper No. 9.

[9]   Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., & Kaufman, Y. (2002). The MODIS Fire Products. Remote Sensing of Environment, 83, 244-262.

[10]   Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E., Saleous, N., Roy, D. P., & Morisette, J. T. (2002). An Overview of MODIS Land Data Processing and Product Status. Remote Sensing of Environment, 83, 244-262.

[11]   Kaufman, Y. J., Justice, C. O., Flynn, L. P., Kendall, J. D., Prins, E. M., Giglio, L., Ward, D. E., Menzel, W. P., & Setzer, A. W. (1998). Potential Global Fire Monitoring from EOS-MODIS. Journal of Geophysical Research, 103, 32215-32238.

[12]   Louis, G., Jacques, D., Christopher, O. J., Yoram, J., Kaufman, S. N. (2003). An Enhanced Contextual Fire Detection Algorithm for MODIS, Remote Sensing of Environment, Paper No. 87.

[13]   Movaghati, S., Samadzadegan, F., & Azizi, S. N. (2009). An Agent Based Algorithm for Forest Fire Detection. Journal of Applied Sciences, 9, 20.

[14]   Soo, C. L., Agnes, L., & Leong, K. K. (2005). New Methods of Active Fire Detection Using MODIS Data. Proceedings of 26th Asian Conference on Remote Sensing.

[15]   Zheng, M., & Wan, S. N. (2007). Collection-5 MODIS Land Surface Temperature Products User’s Guide.