FNS  Vol.5 No.13 , July 2014
Flavonoids Loaded in Nanocarriers: An Opportunity to Increase Oral Bioavailability and Bioefficacy
Abstract: Flavonoids are among the biggest group of polyphenols, widely distributed in plant-based foods. A plethora of evidence supports the health benefits and value of flavonoids can play in the physiological function treatment and in the prevention of disease particularly in the prevention of degenerative conditions including cancers, cardiovascular and neurodegenerative diseases. Hence, flavonoids represent the active constituents of many dietary supplements and herbal remedies, as well as there is an increasing interest in this class of polyphenols as functional ingredients of beverages, food grains and dairy products. Conversely, various studies have also shown that flavonoids have some drawbacks after oral administration such as stability, bioavailability and bioefficacy. This article reviews the current status of novel nanodelivery systems including nanospheres, nanocaspsules, micro- and nanoemulsions, micelles, solid lipid nanoparticles and nanostructured lipid capsules, successfully developed for overcoming the delivery challenges of flavonoids.
Cite this paper: Bilia, A. , Isacchi, B. , Righeschi, C. , Guccione, C. and Bergonzi, M. (2014) Flavonoids Loaded in Nanocarriers: An Opportunity to Increase Oral Bioavailability and Bioefficacy. Food and Nutrition Sciences, 5, 1212-1327. doi: 10.4236/fns.2014.513132.

[1]   Harborne, J.B. and Williams, C.A. (2000) Advances in Flavonoid Research Since 1992. Phytochemistry, 55, 481-504.

[2]   Ross, J.A. and Kasum, C.M. (2002) Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety. Annual Review of Nutrition, 22, 19-34.

[3]   Yao, L.H., Jiang, Y.M., Shi, J., Tomás-Barberán, F.A., Datta, N., Singanusong, R. and Chen, S.S. (2004) Flavonoids in Food and Their Health Benefits. Plant Foods for Human Nutrition, 59, 113-122.

[4]   Heim, K.E., Tagliaferro, A.R. and Bobilya, D.J. (2002) Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships. The Journal of Nutritional Biochemistry, 13, 572-584.

[5]   Manach, C., Williamson, G., Morand, C., Scalbert, A. and Rémésy, C. (2005) Bioavailability and Bioefficacy of Polyphenols In Humans. I. Review of 97 Bioavailability Studies. American Journal of Clinical Nutrition, 81, 230-242.

[6]   Stahl, W., van den Berg, H., Arthur, J., Bast, A., Dainty, J., Faulks, R.M., Gärtner, C., Haenen, G., Hollman, P., Holst, B., Kelly, F.J., Polidori, M.C., Rice-Evans, C., Southon, S., van Vliet, T., Viña-Ribes, J., Williamson, G. and Astley, S.B. (2002) Bioavailability and Metabolism. Molecular Aspects of Medicine, 23, 39-100.

[7]   Roger, E., Lagarce, F., Garcion, E. and Benoit, J.-P. (2010) Biopharmaceutical Parameters to Consider in Order to Alter the Fate of Nanocarriers after Oral Delivery. Nanomedicine, 5, 287-306.

[8]   Thanki, K., Gangwal, R.L.P., Sangamwar, A.T. and Jain, S. (2013) Oral Delivery of Anticancer Drugs: Challenges and Opportunities” Journal of Controlled Release, 170, 15-40.

[9]   Plapied, L., Duhem, N., des Rieux, A. and Préat, V. (2011) Fate of Polymeric Nanocarriers for Oral Drug Delivery. Current Opinion in Colloid & Interface Science, 16, 228-237.

[10]   Brannon-Peppas, L. (1995) Recent Advances on the Use of Biodegradable Microparticles and Nanoparticles in Controlled Drug Delivery. International Journal of Pharmaceutics, 116, 1-9.

[11]   Rejman, J., Oberle, V., Zuhorn, I.S. and Hoekstra, D. (2004) Size-Dependent Internalization of Particles via the Pathways of Clathrin- and Caveolae-Mediated Endocytosis. Biochemical Journal, 377, 159.

[12]   Jones, M.C. and Leroux, J.C. (1999) Polymeric Micelles—A New Generation of Colloidal Drug Carriers. European Journal of Pharmaceutics and Biopharmaceutics, 48, 101-111.

[13]   Gaucher, G., Satturwar, P., Jones, M.-C., Furtos, A. and Leroux, J.-C. (2010) Polymeric Micelles for Oral Drug Delivery. European Journal of Pharmaceutics and Biopharmaceutics, 76, 147-158.

[14]   Porter, C.J.H., Pouton, C.W., Cuine, J.F. and Charman, W.N. (2008) Enhancing Intestinal Drug Solubilisation Using Lipid-Based Delivery Systems. Advanced Drug Delivery Reviews, 60, 673-691.

[15]   Liu, Z., Jiao, Y., Wang, Y., Zhou, C. and Zhang, Z. (2008) Polysaccharides-Based Nanoparticles as Drug Delivery Systems. Advanced Drug Delivery Reviews, 60, 1650-1662.

[16]   Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R. and Rudzinski, W.E. (2001) Biodegradable Polymeric Nanoparticles as Drug Delivery Devices. Journal of Control Release, 70, 1-20.

[17]   Zhang, L. and Kosaraju, S.L. (2007) Biopolymeric Delivery System for Controlled Release of Polyphenolic Antioxidants. European Polymer Journal, 43, 2956-2966.

[18]   Dube, A., Nicolazzo, J.A. and Larson, I. (2010) Chitosan Nanoparticles Enhance the Intestinal Absorption of the Green Tea Catechins (+)-Catechin and (-)-Epigallocatechin Gallate. European Journal of Pharmaceutical Sciences, 41, 219-225.

[19]   Konecsni, K., Low, N.H. and Nickerson, M.T. (2012) Chitosan-Tripolyphosphate Submicron Particles as the Carrier of Entrapped Rutin. Food Chemistry, 134, 1775-1779.

[20]   Ferreira, I., Rocha, S. and Coelho, M. (2007) Encapsulation of Antioxidants by Spraydrying. Chemical Engineering Transactions, 11, 713-717.

[21]   Gomes, J.F.P.S., Rocha, S., Pereira, M. do C., Peres, I., Moreno, S., Toca-Herrera, J. and Coelho, M.A.N. (2010) Lipid/particle Assemblies Based on Maltodextrin-Gum Arabic Core as Bio-Carriers. Colloids and Surfaces B: Biointerfaces, 76, 449-455.

[22]   Kumari, A., Yadav, S.K., Pakade, Y.B., Singh, B. and Yadav, S.C. (2010) Development of Biodegradable Nanoparticles for Delivery of Quercetin. Colloids and Surfaces B: Biointerfaces, 80, 184-192.

[23]   Tan, B.-J., Liu, Y., Chang, K.-L., Lim, B.K. and Chiu, G.N. (2012) Perorally Active Nanomicellar Formulation of Quercetin in the Treatment of Lung Cancer. International Journal of Nanomedicine, 7, 651-661.

[24]   Zhai, Y., Guo, S., Liu, C., Yang, C., Dou, J., Li, L. and Zhai, G. (2013) Preparation and in Vitro Evaluation of Apigenin-Loaded Polymeric Micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 429, 24-30.

[25]   Rangel-Yagui, C.O., Pessoa Jr., A. and Tavares, L.C. (2005) Micellar Solubilization of Drugs. Journal of Pharmacy & Pharmaceutical Sciences, 8, 147-165.

[26]   Lasic, D.D. (1992) Mixed Micelles in Drug Delivery. Nature, 355, 279-280.

[27]   Chat, O.A., Najar, M.H., Mir, M.A., Rather, G.M. and Dar, A.A. (2011) Effects of Surfactant Micelles on Solubilization and DPPH Radical Scavenging Activity of Rutin. Journal of Colloid and Interface Science, 355, 140-149.

[28]   McClements, D.J. (2012) Nanoemulsions versus Microemulsions: Terminology, Differences, and Similarities. Soft Matter, 8, 1719-1729.

[29]   Kang, B.K., Lee, J.S., Chon, S.K., Jeong, S.Y., Yuk, S.H., Khang, G., Lee, H.B. and Cho, S.H. (2004) Development of Self-Microemulsifying Drug Delivery Systems (SMEDDS) for Oral Bioavailability Enhancement of Simvastatin in Beagle Dogs. International Journal of Pharmaceutics, 274, 65-73.

[30]   Rogerio, A.P., Dora, C.L., Andrade, E.L., Chaves, J.S., Silva, L.F.C., Lemos-Senna, E. and Calixto, J.B. (2010) Anti-Inflammatory Effect of Quercetin-Loaded Microemulsion in the Airways Allergic Inflammatory Model in Mice. Pharmacological Research, 61, 288-297.

[31]   Zhang, Y., Wang, R., Wu, J. and Shen, Q. (2012) Characterization and Evaluation of Self-Microemulsifying Sustained- Release Pellet Formulation of Puerarin for Oral Delivery. International Journal of Pharmaceutics, 427, 337-344.

[32]   Mekjaruskul, C., Yang, Y.-T., Leed, M.G.D., Sadgrove, M.P., Jay, M. and Sripanidkulchai, B. (2013) Novelformulation Strategies for Enhancing Oral Delivery of Methoxyflavones in Kaempferia parviflora by SMEDDS or Complexation with 2-Hydroxypropyl-β-Cyclodextrin. International Journal of Pharmaceutics, 445, 1-11.

[33]   Wu, J.-W., Lin, L.-C., Hung, S.-C., Chi, C.-W. and Tsai, T.-H. (2007) Analysis of Silibinin in Rat Plasma and Bile for Hepatobiliary Excretion and Oral Bioavailability Application. Journal of Pharmaceutical and Biomededical Analysis, 45, 635-641.

[34]   Wei, Y., Ye, X., Shang, X., Peng, X., Bao, Q., Liu, M., Guo, M. and Li, F. (2012) Enhanced Oral Bioavailability of Silybin by a Supersaturatable Self-Emulsifying Drug Delivery System (S-SEDDS). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 22-28.

[35]   Jain, S., Jain, A.K., Pohekar, M. and Thanki, K. (2013) Novel Self-Emulsifying Formulation of Quercetin for Improved in Vivo Antioxidant Potential: Implications for Drug-Induced Cardiotoxicity and Nephrotoxicity. Free Radical Biology & Medicines, 65, 117-130.

[36]   Liu, W., Tian, R., Hu, W., Jia, Y., Jiang, H., Zhang, J. and Zhang, L. (2012) Preparation and Evaluation of Self-Micro-emulsifying Drug Delivery System of Baicalein. Fitoterapia, 83, 1532-1539.

[37]   Mehnert, W. and Mäder, K. (2001) Solid Lipid Nanoparticles: Production, Characterization and Applications. Advanced Drug Delivery Reviews, 47, 165-196.

[38]   Li, H., Zhao, X., Ma, Y., Zhai, G., Li, L. and Lou, H. (2009) Enhancement of Gastrointestinal Absorption of Quercetin by Solid Lipid Nanoparticles. Journal of Control Release, 133, 238-244.

[39]   Luo, C.-F., Yuan, M., Chen, M.-S., Liu, S.-M., Zhu, L., Huang, B.-Y., Liu, X.-W. and Xiong, W. (2011) Pharmacokinetics, Tissue Distribution and Relative Bioavailability of Puerarin Solid Lipid Nanoparticles Following Oral Administration. International Journal of Pharmaceutics, 410, 138-144.

[40]   Müller, R.H., Radtke, M. and Wissing, S.A. (2002) Nanostructured Lipid Matrices for Improved Microencapsulation of Drugs. International Journal of Pharmaceutics, 242, 121-128.

[41]   Liu, L., Tang, Y., Gao, C., Li, Y., Chen, S., Xiong, T., Li, J., Du, M., Gong, Z., Chen, H., Liu, L. and Yao, P. (2014) Characterization and Biodistribution in Vivo of Quercetin-Loaded Cationic Nanostructured Lipid Carriers. Colloids and Surfaces B: Biointerfaces, 115, 125-131.

[42]   Fathi, M., Varshosaz, J., Mohebbi, M. and Shahidi, F. (2013) Hesperetin-Loaded Solid Lipid Nanoparticles and Nanostructure Lipid Carriers for Food Fortification: Preparation, Characterization, and Modeling. Food Bioprocess Technology, 6, 1464-1475.

[43]   Fathi, M. and Varshosaz, J. (2013) Novel Hesperetin Loaded Nanocarriers for Food Fortification: Production and Characterization. Journal of Functional Foods, 5, 1382-1391.

[44]   Dodziuk, H., Ed. (2006) Cyclodextrins and Their Complexes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

[45]   Folch-Cano, C., Guerrero, J., Speisky, H., Jullian, C. and Olea-Azar, C. (2013) NMR and Molecular Fluorescence Spectroscopic Study of the Structure and Thermodynamic Parameters of EGCG/β-Cyclodextrin Inclusion Complexes with Potential Antioxidant Activity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 78, 287-298.

[46]   Miyake, K., Arima, H., Hirayama, F., Yamamoto, M., Horikawa, T. and Sumiyoshi, H. (2000) Improvement of Solubility and Oral Bioavailability of Rutin by Complexation with 2-Hydroxypropyl-Beta-Cyclodextrin. Pharmaceutical Development and Technology, 5, 399-407.

[47]   Nguyen, T.A., Liu, B., Zhao, J., Thomas, D.S. and Hook, J.M. (2013) An Investigation into the Supramolecular Structure, Solubility, Stability and Antioxidant Activity of Rutin/Cyclodextrin Inclusion Complex. Food Chemistry, 136, 186-192.

[48]   Chakraborty, S., Basu, S., Lahiri, A. and Basak, S. (2010) Inclusion of Chrysin in β-Cyclodextrin Nanocavity and Its Effect on Antioxidant Potential of Chrysin: A Spectroscopic and Molecular Modeling Approach. Journal of Molecular Structure, 977, 180-188.

[49]   Calabrò, M.L., Tommasini, S., Donato, P., Raneri, D., Stancanelli, R. and Ficarra, P. (2004) Effects of Alpha- and Beta-Cyclodextrin Complexationon the Physico-Chemical Properties and Antioxidant Activity of Some 3-Hydroxy-flavones. Journal of Pharmaceutical and Biomedical Analysis, 35, 365-377.

[50]   Jullian, C., Moyano, L., Yañez, C. and Olea-Azar, C. (2007) Complexation of Quercetin with Three Kinds of Cyclodextrins: An Antioxidant Study. Spectro-Chimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67, 230-234.

[51]   Carlotti, M.E., Sapino, S., Ugazio, E. and Caron, G. (2010) On the Complexation of Quercetin with Methyl-β-Cyclo-dextrin: Photostability and Antioxidant Studies. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 70, 81-90.

[52]   Bergonzi, M.C., Bilia, A.R., Di Bari, L., Mazzi, G. and Vincieri, F.F. (2007) Studies on the Interactions between Some Flavonols and Cyclodextrins. Bioorganic and Medicinal Chemistry Letters, 17, 5744-5748.

[53]   Jullian, C., Brossard, V., Gonzalez, I., Alfaro, M. and Olea-Azar, C. (2011) Cyclodextrins-Kaempferol Inclusion Complexes: Spectroscopic and Reactivity Studies. Journal of Solution Chemistry, 40, 727-739.

[54]   Shulman, M., Cohen, M., Soto-Gutierrez, A., Yagi, H., Wang, H.Y., Goldwasser, J., Lee-Parsons, C.W., Benny-Rat-saby, O., Yarmush, M.L. and Nahmias, Y. (2011) Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin. PLoS ONE, 6, e18033.

[55]   Yang, L.-J., Ma, S.-X., Zhou, S.-Y., Chen, W., Yuan, M.-W. and Yin, Y.-Q. (2013) Preparation and Characterization of Inclusion Complexes of Naringeninwith β-Cyclodextrin or Its Derivative. Carbohydrate Polymers, 98, 861-869.

[56]   Tommasini, S., Calabrò, M.L., Stancanelli, R., Donato, P., Costa, C., Catania, S., Villari, V., Ficarra, P. and Ficarra, R. (2005) The Inclusion Complexes of Hesperetin and Its 7-Rhamnoglucoside with (2-Hydroxypropyl)-Beta-Cyclodextrin. Journal of Pharmaceutical and Biomedical Analysis, 39, 572-580.

[57]   Ficarra, R., Tommasini, S., Raneri, D., Calabrò, M., Di Bella, M. and Rustichelli, C. (2002) Study of Flavonoids/β-Cyclodextrins Inclusion Complexes by NMR, FT-IR, DSC, X-Ray Investigation. Journal of Pharmaceutical and Biomedical Analysis, 29, 1005-1014.

[58]   Yang, L.-J., Chen, W., Ma, S.-X., Gao, Y.-T., Huang, R., Yan, S.-J. and Lin, J. (2011) Host-Guest System of Taxifolin and Native Cyclodextrin or Its Derivative: Preparation, Characterization, Inclusion Mode, and Solubilisation. Carbohydrate Polymers, 85, 629-637.

[59]   Daruházi, A.E., Kiss, T., Vecsernyés, M., Szente, L., Szoke, E. and Lem-berkovics, E. (2013) Investigation of Transport of Genistein, Daidzein and Their Inclusion Complexes Prepared with Different Cyclodextrins on Caco-2 Cell Line,” Journal of Pharmaceutical and Biomedical Analysis, 84C, 112-116.

[60]   Yatsu, F.K.J., Koester, L.S., Lula, I., Passos, J.J., Sinisterra, R. and Bassani, V.L. (2013) Multiple Complexation of Cyclodextrin with Soy Isoflavones Present in an Enriched Fraction. Carbohydrate Polymers, 98, 726-735.

[61]   Fricker, G., Kromp, T., Wendel, A., Blume, A., Zirkel, J., Rebmann, H., Setzer, C., Quinkert, R.O., Martin, F. and Muller-Goymann, C. (2010) Phospholipids and Lipid-Based Formulations in Oral Drug Delivery. Pharmaceutical Research, 27, 1469-1486.

[62]   Sharma, S. and Roy, R.K. (2010) Phytosomes: An Emerging Technology. International Journal of Pharmaceutical Research and Development, 2, 1-5.

[63]   Chen, Z.P., Sun, J., Chen, H.X., Xiao, Y.Y., Liu, D., Chen, J., Cai, H. and Cai, B.C. (2010) Comparative Pharmacokinetics and Bioavailability Studies of Quercetin, Kaempferol and Isorhamnetin after Oral Administration of Ginkgo biloba Extracts, Ginkgo biloba Extract Phospholipid Complexes and Ginkgo biloba Extract Solid Dispersions in Rats. Fitoterapia, 81, 1045-1052.

[64]   Bombardelli, E., Gabetta, B. and Pifferi, G. (1988) Complexes of Flavanolignanes with Phospholipids, Preparation Thereof and Associated Pharmaceutical Compositions. EP0209038 B1.

[65]   Song, Y., Zhuang, J., Guo, J., Xiao, Y. and Ping, Q. (2008) Preparation and Properties of a Silybin-Phospholipid Complex. Pharmazie, 63, 35-42.

[66]   Pietta, P., Simonetti, P., Gardana, C., Brusamolino, A., Morazzoni, P. and Bombardelli, E. (1998) Relationship between Rate and Extent of Catechin Absorption and Plasma Antioxidant Status. Biochemical and Molecular Biology International, 46, 895-903.

[67]   Singh, D., Rawat, M.S.M., Semalty, A. and Semalty, M. (2012) Quercetin-Phospholipid Complex: An Amorphous Pharmaceutical System in Herbal Drug Delivery. Current Drug Discovery Technologies, 9, 17-24.