A New Approach for the Exact Solutions of Nonlinear Equations of Fractional Order via Modified Simple Equation Method

Muhammad Younis^{*}

Show more

References

[1] Johnson, R.S. (1970) A Non-Linear Equation Incorporating Damping and Dispersion. Journal of Fluid Mechanics, 42, 49-60.

http://dx.doi.org/10.1017/S0022112070001064

[2] Glöckle, W.G. and Nonnenmacher, T.F. (1995) A Fractional Calculus Approach to Self Similar Protein Dynamics. Biophysical Journal, 68, 46-53.

http://dx.doi.org/10.1016/S0006-3495(95)80157-8

[3] Podlubny, I. (1999) Fractional Differential Equations. Academic Press, San Diego.

[4] He, J.H. (1999) Some Applications of Nonlinear Fractional Differential Equations and Their Applications. Bulletin of Science and Technology, 15, 86-90.

[5] Wang, Q. (2006) Numerical Solutions for Fractional KDV-Burgers Equation by Adomian Decomposition Method. Applied Mathematics and Computation, 182, 1048-1055.

http://dx.doi.org/10.1016/j.amc.2006.05.004

[6] Rahman, M., Mahmood, A. and Younis, M. (2014) Improved and More Feasible Numerical Methods for Riesz Space Fractional Partial Differential Equations. Applied Mathematics and Computation, 237, 264-273.

http://dx.doi.org/10.1016/j.amc.2014.03.103

[7] Liu, J. and Hou, G. (2011) Numerical Solutions of the Space- and Time-Fractional Coupled Burgers Equations by Generalized Differential Transform Method. Applied Mathematics and Computation, 217, 7001-7008.

http://dx.doi.org/10.1016/j.amc.2011.01.111

[8] Iftikhar, M., Rehman, H.U. and Younis, M. (2013) Solution of Thirteenth Order Boundary Value Problems by Differential Transformation Method. Asian Journal of Mathematics and Applications, 2014, 11 p.

[9] Wang, M., Li, X. and Zhang, J. (2008) The -Expansion Method and Travelling Wave Soltions of Nonlinear Evolution Equations in Mathematical Physics. Physics Letters A, 372, 417-423.

http://dx.doi.org/10.1016/j.physleta.2007.07.051

[10] Bin, Z. (2012) -Expansion Method for Solving Fractional Partial Differential Equations in the Theory of Mathematical Physics. Communications in Theoretical Physics, 58, 623-630.

http://dx.doi.org/10.1088/0253-6102/58/5/02

[11] Younis, M. and Zafar, A. (2014) Exact Solution to Nonlinear Differential Equations of Fractional Order via - Expansion Method. Applied Mathematics, 5, 1-6.

http://dx.doi.org/10.4236/am.2014.51001

[12] Liu, S.K., Fu, Z.T., Liu, S.D. and Zhao, Q. (2001) Jacobi Elliptic Function Expansion Method and Periodic Wave Solutions of Nonlinear Wave Equations. Physics Letters A, 289, 69-74.

http://dx.doi.org/10.1016/S0375-9601(01)00580-1

[13] Parkes, E.J. and Duffy, B.R. (1996) An Automated Tanh-Function Method for Finding Solitary Wave Solutions to Non-Linear Evolution Equations. Computer Physics Communications, 98, 288-300.

http://dx.doi.org/10.1016/0010-4655(96)00104-X

[14] Gepreel, K.A. (2011) The Homotopy Perturbation Method Applied to the Nonlinear Fractional Kolmogorov Petrovskii Piskunov Equations. Applied Mathematics Letters, 24, 1428-1434.

http://dx.doi.org/10.1016/j.aml.2011.03.025

[15] Younis, M. (2013) The First Integral Method for Time-Space Fractional Differential Equations. Journal of Advanced Physics, 2, 220-223.

http://dx.doi.org/10.1166/jap.2013.1074

[16] Younis, M. and Ali, S. (2014) New Applications to Solitary Wave Ansatz. Applied Mathematics, 5, 969-974.

http://dx.doi.org/10.4236/am.2014.56092

[17] Li, Z.-B. and He, J.-H. (2010) Fractional Complex Transform for Fractional Differential Equations. Computers & Mathematics with Applications, 15, 970-973.

[18] Jawad, A.J.M., Petkovic, M.D. and Biswas, A. (2010) Modified Simple Equation Method for Nonlinear Evolution Equations. Applied Mathematics and Computation, 217, 869-877.

http://dx.doi.org/10.1016/j.amc.2010.06.030

[19] Younis, M., Iftikhar, M. and Rehman, H.U. (2014) Exact Solutions to the Nonlinear Schrdinger and Eckhaus Equations by Modied Simple Equation Method. Journal of Advanced Physics, (accepted).

[20] Jumarie, G. (2006) Modified Riemann-Liouville Derivative and Fractional Taylor Series of Nondifferentiable Functions Further Results. Computers & Mathematics with Applications, 51, 1367-1624.

http://dx.doi.org/10.1016/j.camwa.2006.02.001

[21] Jumarie, G. (2009) Laplace Transform of Fractional Order via the Mittag Leffler Function and Modified Riemannan Liouville Derivative. Applied Mathematics Letters, 22, 1659-1664.

http://dx.doi.org/10.1016/j.aml.2009.05.011