AiM  Vol.4 No.9 , July 2014
Evaluation of the Biotechnological Potential of Isolated Bacteria of the Soil in the Degradation of Residues of Skin Swine
Abstract: The degradation of industrial residues is of great importance for the maintenance of the environment. Therefore, the objective of this study is to verify the proteases production for bacteria of the gender isolated Bacillus of soil. The samples of skin residue were collected in industries of the area west of Santa Catarina, using residue of skin rude swine and residue of skin processed swine. The verification of the biotechnological potential consisted of the use of these residues in middle of culture and inoculation of the respective species of bacteria. The results were more expressive in the samples of skin processed swine, where it showed a degradation average around 43.55% (p/p). While, in the samples of residue of skin rude swine, an average of degradation of 20.60% (p/p) happened. In this way, the residue of skin processed swine is more sensitive than the catalytic activity of the bacterial enzymes.
Cite this paper: Rosa, A. , Golynski, N. and Teixeira, M. (2014) Evaluation of the Biotechnological Potential of Isolated Bacteria of the Soil in the Degradation of Residues of Skin Swine. Advances in Microbiology, 4, 493-497. doi: 10.4236/aim.2014.49054.

[1]   Santa Catarina (2014) Secretaria Estadual da Fazenda. Florianopolis, Brasil.

[2]   Dick, W.A. and Tabatabai, M.A. (1992) Significance and Potential Uses of Soil Enzimes. In: Metting, F.B., Ed., Soil Microbial Ecology, Marcel Dekker, New York, 95-127.

[3]   Alexander, M. (1994) Biodegradation and Bioremediation. Academic Press, San Diego, 192.

[4]   Balba, M.T., Al-Awadhi, N. and Al-Daher, R. (1998) Bioremediation of Oil-Contaminated Soil: Microbiological Methods for Feasibility Assessment and Field Evaluation. Journal of Microbiological Methods, 32, 155-164.

[5]   Wiseman, A. (1991) Manual de Biotecnología de las Enzimas. 2a Edition, Editora Acribia, Zaragoza, 816.

[6]   Desai, J.D. and Banat, I.M. (1997) Microbial Prodution of Surfactants and Their Comercial Potential. Microbiology and Molecular Biology Reviews, 61, 47-64.

[7]   Gacesa, P. and Hublle, J. (1990) Tecnología de las Enzimas. 3a Edition, Editora Acribia, Zaragoza, 743.

[8]   Freire, R.S., Durán, N., Peralta, P.G., Pelegrini, R.T. and Kubota, L.T. (2000) Novas Tendências para o Tratamento de Resíduos Industriais Contendo Espécies Organocloradas. Química Nova, 23, 547-556.

[9]   Lima, U.A., Aquarone, E., Borzani, W. and Schmidell, W. (2001) Biotecnologia Industrial: Processos Fermentativos e Enzimaticos. 2a Edition, Editora Edgard Blücher, Sao Paulo, 70-85.

[10]   Palleroni, N.J. (1984) Genus Bacillus. In: Krieg, N.R. and Holt, J.G., Eds., Bergey’s Manual of Determinative Bacteriology, 3rd Edition, Williams & Wilkins Co., Baltimore, 278-299.

[11]   Belitz, H.D., Burghagen, M.M., Schieberle, P. and Grosch, W. (2009) Food Chemistry. 4th Revised and Extended Edition, Springer, Berlin.

[12]   Mutnuri, S., Vasudevan, N. and Kaestner, M. (2005) Degradation of Anthracene and Pyrene Supplied by Microcrystals and Non-Aqueous-Phase Liquids. Applied Microbiology and Biotechnology, 67, 569-576.

[13]   Jacques, R.J.S. (2005) Biorremediacao de antraceno, fenantreno e pireno em um argissolo. Programa de Pos-graduacao em Ciencia do Solo, Universidade Federal do Rio Grande do Sul, Porto Alegre, 170.

[14]   De Boer, A.S. and Diderichsen, B. (1991) On the Safety of Bacillus subtilis and B. amilolyquefaciens: A Review. Applied Microbiology and Biotechnology, 40, 595-598.

[15]   Teixeira, M.L., Cladera-Oliveira, F., Santos, J. and Brandelli, A. (2009) Purification and Characterization of a Peptide from Bacillus licheniformis Showing Dual Antimicrobial and Emulsifying Activities. Food Research International, 42, 63-68.