[1] Verlinde, E. (1995) Global Aspects of Electric-Magnetic Duality. Nuclear Physics B, 455, 211-225.
http://dx.doi.org/10.1016/0550-3213(95)00431-Q
[2] Efremov, V.N., Mitskievich, N.V., Hernandez Magdaleno, A.M. and Serrano Bautista, R. (2005) Topological Gravity on Plumbed V-Cobordisms. Classical and Quantum Gravity, 22, 3725-3744.
http://dx.doi.org/10.1088/0264-9381/22/17/022
[3] Efremov, V.N., Hernandez Magdaleno, A.M. and Moreno, C. (2010) Topological Origin of the Coupling Constants Hierarchy in Kaluza-Klein Approach. International Journal of Modern Physics A, 25, 2699-2733.
http://dx.doi.org/10.1142/S0217751X10048482
[4] Saveliev, N. (2002) Invariants for Homology3-Spheres. Springer, Berlin, 223.
http://dx.doi.org/10.1007/978-3-662-04705-7
[5] Eisenbud, D. and Neumann, W. (1985) Three-Dimensional Link Theory and Invariants of Plane Curve Singularities. Princeton University Press, Princeton, 172.
[6] Saveliev, N. (2002) Fukumoto-Furuta Invariants of Plumbed Homology 3-Spheres. Pacific Journal of Mathematics, 205, 465-490. http://dx.doi.org/10.2140/pjm.2002.205.465
[7] Neumann, W. (1997) Commensurability and Virtual Fibration for Graph Manifolds. Topology, 36, 355-378.
http://dx.doi.org/10.1016/0040-9383(96)00014-6
[8] Hirzebruh, F. (1971) Differentiable Manifolds and Quadratic Forms. Marcel Dekker, New York, 56-58.
[9] Neumann, W. (1981) A Calculus for Plumbing Applied to the Topology of Complex Surface Singularities and Degenerating Complex Curves. Transactions of the American Mathematical Society, 268, 299.
http://dx.doi.org/10.1090/S0002-9947-1981-0632532-8
[10] Waldhausen, F. (1967) Eine Klasse Von 3-Dimensionalen Mannigfaltigkeiten. I. Inventiones Mathematicae, 3, 308-333. http://dx.doi.org/10.1007/BF01402956
[11] Popescu-Pampu, P. (2007) The Geometry of Continued Fractions and the Topology of Surface Singularities. In: Brasselet, J.-P. and Suwa, T., Eds., Singularities in Geometry and Topology 2004, Advanced Studies in Pure Mathematics, Vol. 46, 119-195.
[12] Beasley, C. and Witten, E. (2005) Non-Abelian Localization for Chern-Simons Theory. Journal of Differential Geometry, 70, 183-323.
[13] Efremov, V., Hernandez, A. and Becerra, F. (2014) The Universe as a Set of Topological Fluids with Hierarchy and Fine Tuning of Coupling Constants in Terms of Graph Manifolds. arXiv:1309.0690v2