Back
 MSA  Vol.5 No.8 , June 2014
Net-Shape Clay Ceramics with Glass Waste Additive
Abstract:
In this paper, a glass powder from waste containers was mixed (10 - 40 wt.%) with a kaolinitic sandy clay from Cameroon to elaborate net-shape ceramics, fired at 1100°C. The sintering behavior was from dilatometry and thermo gravimetric analyses together with the characterization of porosity and flexural strength. The increase of glass to kaolinite ratio reduces the sintering shrinkage leading to a none-densification sintering when 40 wt.% of glass is added in the mixture. The volume variation during the whole firing process is from the individual volume variations during the quartz transformation, the structural reorganization of kaolinite and during sintering. Quartz size and relative quantity have a significant role on the first processes since it leads to either cohesive or un-cohesive behavior. But the glass quantity strongly controls the second and the third thermal processes because glass additions change the recrystallization processes, leading to the formation of dense clay-glass agglomerates distributed within the three dimensional quartz network.
Cite this paper: Djangang, C. , Kamseu, E. , Elimbi, A. , Lecomte, G. , Blanchart, P. (2014) Net-Shape Clay Ceramics with Glass Waste Additive. Materials Sciences and Applications, 5, 592-602. doi: 10.4236/msa.2014.58061.
References

[1]   Corinaldesia, V., Gnappib, G., Moriconia, G. and Montenerob, A. (2005) Reuse of Ground Waste Glass as Aggregate for Mortars. Waste Management, 25, 197-201.
http://dx.doi.org/10.1016/j.wasman.2004.12.009

[2]   Andreola, F., Barbieri, L., Corradi, A., Lancellotti, I., Falcone, R. and Hreglich, S. (2005) Glass-Ceramics Obtained by the Recycling of End of Life Cathode Ray Tubes Glasses. Waste Management, 25, 183-189.
http://dx.doi.org/10.1016/j.wasman.2004.12.007

[3]   Loryuenyong, V., Panyachai, T., Kaewsimork, K. and Siritai, C. (2010) Fabrication of Lightweight Clay Bricks from Recycled Glass Wastes. In: Jiang, D., Zeng, Y., Singh, M. and Heinrich, J., Ed., Ceramic Materials and Components for Energy and Environmental Applications, John Wiley & Sons, Inc., Hoboken, 213-219.

[4]   Pontikes, Y., Esposito, L., Tucci, A. and Angelopoulos, G.N. (2007) Thermal Behaviour of Clays for Traditional Ceramics with Soda-Lime-Silica Waste Glass Admixture. Journal of the European Ceramic Society, 27, 1657-1663.
http://dx.doi.org/10.1016/j.jeurceramsoc.2006.05.068

[5]   Zanelli, C., Raimondo, M., Guarini, G. and Dondi, M. (2011) The Vitreous Phase of Porcelain Stoneware: Composition, Evolution during Sintering and Physical Properties. Journal of Non-Crystalline Solids, 357, 3251-3260.
http://dx.doi.org/10.1016/j.jnoncrysol.2011.05.020

[6]   Loryuenyong, V., Panyachai, T., Kaewsimork, K. and Siritai, C (2009) Effects of Recycled Glass Substitution on the Physical and Mechanical Properties of Clay Bricks. Waste Management, 29, 2717-2721.
http://dx.doi.org/10.1016/j.wasman.2009.05.015

[7]   Binhussaina, M.A., Marangoni,M., Bernardo, E. and Colombo, P. (2014) Sintered and Glazed Glass-Ceramics from Natural and Waste Raw Materials. Ceramics International, 40, 3543-3551.
http://dx.doi.org/10.1016/j.ceramint.2013.09.074

[8]   Losq, C.L. and Neuville, D.R. (2013) Effect of the Na/K Mixing on the Structure and the Rheology of Tectosilicate Silica-Rich Melts, Chemical Geology, 346, 57-71.
http://dx.doi.org/10.1016/j.chemgeo.2012.09.009

[9]   Fluegel, A. (2007) Glass Viscosity Calculation Based on a Global Statistical Modelling Approach. European Journal of Glass Science and Technology Part A: Glass Technology, 48, 13-30.

[10]   Boccaccini, A.R. (1994) Sintering of Glass Matrix Composites Containing Al2O3 Platelet Inclusions. Journal of Materials Science, 29, 4273-4278.
http://dx.doi.org/10.1007/BF00414210

[11]   Boccaccini, A.R. and Olevsky, E.A. (1999) Processing of Platelet-Reinforced Glass Matrix Composites: Effect of Inclusions on Sintering Anisotropy. Journal of Materials Processing Technology, 96, 92-101.
http://dx.doi.org/10.1016/S0924-0136(99)00272-1

[12]   Tuan W.H., Gilbart, E. and Brook, R.J. (1989) Sintering of Heterogeneous Ceramic Compacts, Part 1 Al2O3-Al2O3. Journal of Materials Science, 24, 1062-1068.
http://dx.doi.org/10.1007/BF01148799

[13]   Tuan, W.H. and Brook R.J. (1989) Sintering of Heterogeneous Ceramic Compacts, Part 2 ZrO2-Al2O3. Journal of Materials Science, 24, 1953-1958.
http://dx.doi.org/10.1007/BF01148799

[14]   He, L.H. and Zhao J.H. (2003) Influence of Inclusion Shape on Viscous Sintering. Journal of Non-Crystalline Solids, 316, 384-388.
http://dx.doi.org/10.1016/S0022-3093(02)01633-2

[15]   Eberstein, M., Reinsch, S., Müller, R., Deubener, J. and Schiller, W.A. (2009) Sintering of Glass Matrix Composites with Small Rigid Inclusions. Journal of the European Ceramic Society, 29, 2469-2479.
http://dx.doi.org/10.1016/j.jeurceramsoc.2009.02.007

[16]   Azzou, A. and Blanchart, P. (2011) Predicting the Sintering Curve of Porcelain by Support Vector Regression. Journal of the American Ceramic Society, 94, 3768-3773.
http://dx.doi.org/10.1111/j.1551-2916.2011.04687.x

[17]   Yan, Z., Martin, C.L., Guillon, O. and Bouvard, D. (2013) Effect of Size and Homogeneity of Rigid Inclusions on the Sintering of Composites. Scripta Materialia, 69, 327-330.
http://dx.doi.org/10.1016/j.scriptamat.2013.05.013

[18]   Huang, R. and Pan J. (2007) A Two-Scale Model for Sintering Damage in Powder Compact Containing Inert Inclusions. Mechanics of Materials, 39, 710-726.
http://dx.doi.org/10.1016/j.mechmat.2006.12.002

[19]   Ogbukagu, I.N. (1980) Refractory Clays from the Ogwashi-Asaba Formation, South-East Nigeria. Nigeria Field, 45, 76-82.

[20]   Fluegel, A. (2004) Glass Viscosity Calculation Based on a Global Statistical Modelling Approach.
http://glassproperties.com/

[21]   McConcille, C.J., Lee, W.E. and Sharp, J.H. (1998) Microstructure Evolution in Fired Kaolinite. British Ceramic Transactions, 97, 162-167.

[22]   Song, J.G., Wang, F., Bai, X.B., Du, D.M., Ju, Y.Y., Xu, M.H. and Ji, G.C. (2011) Effect of the Sintering Technology on the Properties of Fired Brick from Quartz Sands. Journal of Ceramic Processing Research, 12, 357-360.

[23]   Djangang, C.N., Elimbi, A., Melo, U.C., Lecomte, G.L., Nkoumbou C., Soro, J., Bonnet J.P., Blanchart, P. and Njopwouo, D. (2008) Refractory Ceramics from Clays of Mayouom and Mvan in Cameroon. Applied Clay Science, 39, 1018.
http://dx.doi.org/10.1016/j.clay.2007.04.006

[24]   Traoré, K., Gridi-Bennadji, F. and Blanchart, P. (2006) Significance of Kinetic Theories on the Recrystallization of Kaolinite, Signicance of Kinetic Theories on the Recrystallization of Kaolinite. Thermochimica Acta, 451, 99-104.
http://dx.doi.org/10.1016/j.tca.2006.09.009

[25]   Sei, J., Kedi B.A., Olivier-Fourcade, B., Quiquampoix H., Staunton S. and Jumas J.C. (2012) Clays in the Ivory Coast (West Africa): Mineralogy, Physico Chemical Properties and Applications. In: Orbovic, V. and Huang, Z.X., Eds., Kaolinite: Occurrences, Characteristics and Applications, Nova Science Publishers, Hauppauge, 31-67.

[26]   Seynou, M., Millogo, Y., Ouedraogo, R., Traoré, K. and Tirlocq, J. (2011) Firing Transformations and Properties of Tiles from a Clay from Burkina Faso. Applied Clay Science, 51, 499-502.
http://dx.doi.org/10.1016/j.clay.2011.01.002

 
 
Top