JMP  Vol.5 No.11 , June 2014
Relativistic Gauge Invariant Wave Equation of the Electron-Neutrino
ABSTRACT

With the right and the left waves of an electron, plus the left wave of its neutrino, we write the tensorial densities coming from all associations of these three spinors. We recover the wave equation of the electro-weak theory. A new non linear mass term comes out. The wave equation is form invariant, then relativistic invariant, and it is gauge invariant under the U(1)×SU(2), Lie group of electro-weak interactions. The invariant form of the wave equation has the Lagrangian density as real scalar part. One of the real equations equivalent to the invariant form is the law of conservation of the total current.


Cite this paper
Daviau, C. and Bertrand, J. (2014) Relativistic Gauge Invariant Wave Equation of the Electron-Neutrino. Journal of Modern Physics, 5, 1001-1022. doi: 10.4236/jmp.2014.511102.
References
[1]   Daviau, C. and Bertrand, J. (2014) New Insights in the Standard Model of Quantum Physics in Clifford Algebra.
http://hal.archives-ouvertes.fr/hal-00907848

[2]   Daviau, C. and Bertrand, J. (2014) Nouvelle approche du modele standard de la physique quantique en algebre de Clifford, JePublie.

[3]   Daviau, C. (2013) Advances in Imaging and Electron Physics, 179, 1-136.
http://dx.doi.org/10.1016/B978-0-12-407700-3.00001-6

[4]   Daviau, C. (2012) Nonlinear Dirac Equation, Magnetic Monopoles and Double Space-Time, CISP, Cambridge (UK).

[5]   Daviau, C. (2012) Double Space-Time and more, JePublie.

[6]   Lochak, G. (1983) Annales de la Fondation Louis de Broglie, 8, 345-370.

[7]   Lochak, G. (1985) International Journal of Theoretical Physics, 24, 1019-1050.
http://dx.doi.org/10.1007/BF00670815

[8]   Daviau, C. (2005) Annales de la Fondation Louis de Broglie, 30, 409-428.

[9]   Daviau, C. and Bertrand, J. (2013) Annales de la Fondation Louis de Broglie, 38, 57-81.

[10]   Lochak, G. (1985) The Symmetry between Electricity and Magnetism and the Wave Equation of a Spin 1/2 Magnetic Monopole. Proceedings of the 4th International Seminar on the Mathematical Theory of Dynamical Systems and Microphysics, Udine, 4-13 September 1985, 107-131.

 
 
Top