A Classical Field Theory of Gravity and Electromagnetism

ABSTRACT

A classical field theory of gravity and electromagnetism is developed.
The starting point of the theory is the Maxwell equations which are directly
tied to the Riemann-Christoffel curvature tensor. This is done through the
derivatives of the Maxwell tensor which are equated to a vector field contracted with the
curvature tensor, *i.e.*, . The electromagnetic portion of the theory is shown to be
equivalent to the classical Maxwell equations with the addition of a hidden
variable. Because the proposed equations describing electromagnetism and
gravity differ from the classical Maxwell-Einstein equations, their ability to
describe classical physics is shown for several situations by direct
calculation. The inclusion of antimatter and its behavior in a gravitational
field, and the possibility of particle-like solutions exhibiting quantized
charge, mass and angular momentum are discussed.

KEYWORDS

Classical Field Theory, Gravitation and Electromagnetism, General Relativity, Antimatter, Antimatter Gravity, Hidden Variable Theories, Riemann Geometry

Classical Field Theory, Gravitation and Electromagnetism, General Relativity, Antimatter, Antimatter Gravity, Hidden Variable Theories, Riemann Geometry

Cite this paper

Beach, R. (2014) A Classical Field Theory of Gravity and Electromagnetism.*Journal of Modern Physics*, **5**, 928-939. doi: 10.4236/jmp.2014.510096.

Beach, R. (2014) A Classical Field Theory of Gravity and Electromagnetism.

References

[1] Goenner, H.F.M. (2004) Living Reviews in Relativity, 7.

http://www.livingreviews.org/lrr-2004-2.

[2] Sachs, M. (1999) Nuovo Cimento Della Societa Italiana Di Fisica B—Basic Topics in Physics, 114, 123-126.

[3] Elyasi, N. and Boroojerdian, N. (2011) International Journal of Theoretical Physics, 50, 850-860.

http://dx.doi.org/10.1007/s10773-010-0622-9

[4] Wesson, P.S. and Ponce de Leon, J. (1992) Journal of Mathematical Physics, 33, 3883-3887.

http://dx.doi.org/10.1063/1.529834

[5] Overduin, J.M. and Wesson, P.S. (1997) Physics Reports, 283, 303-378.

http://dx.doi.org/10.1016/S0370-1573(96)00046-4

[6] Weinberg, S. (1972) Gravitation and Cosmology. John Wiley & Sons, New York.

[7] Eisenhart, L.P. (1947) An Introduction to Differential Geometry, Chapter 23: Systems of Partial Differential Equations of the First Order, Mixed Systems. Princeton University Press, Princeton.

[8] Misner, C., Thorne, K. and Wheeler, J. (1970) Gravitation. W.H. Freeman and Company, San Francisco, 840.

[9] Landau, L.D. and Lifshitz, E.M. (1975) The Classical Theory of Fields. 4th Edition, Pergamon Press, New York, 235.

[10] Feynman, R.P. (1949) Physical Review, 76, 749-759.

http://dx.doi.org/10.1103/PhysRev.76.749

[11] Villata, M. (2011) EPL, 94, 20001-p1-20001-p4.

[12] Hajdukovic, D.S. (2011) Astrophysics and Space Science, 334, 215-218.

http://dx.doi.org/10.1007/s10509-011-0744-4

[13] Hajdukovic, D.S. (2010) Astrophysics and Space Science, 330, 1-5.

http://dx.doi.org/10.1007/s10509-010-0387-x

[14] Ferragut, R., et al. (2011) Canadian Journal of Physics, 89, 17-24.

http://dx.doi.org/10.1139/P10-099

[15] Starkman, G.D. (2012) Philosophical Transactions of the Royal Society A, 369, 5018-5041.

http://dx.doi.org/10.1098/rsta.2011.0292

[16] Beach, R.J. (1999) Physics Essays, 12, 457-467.

http://dx.doi.org/10.4006/1.3025404

[1] Goenner, H.F.M. (2004) Living Reviews in Relativity, 7.

http://www.livingreviews.org/lrr-2004-2.

[2] Sachs, M. (1999) Nuovo Cimento Della Societa Italiana Di Fisica B—Basic Topics in Physics, 114, 123-126.

[3] Elyasi, N. and Boroojerdian, N. (2011) International Journal of Theoretical Physics, 50, 850-860.

http://dx.doi.org/10.1007/s10773-010-0622-9

[4] Wesson, P.S. and Ponce de Leon, J. (1992) Journal of Mathematical Physics, 33, 3883-3887.

http://dx.doi.org/10.1063/1.529834

[5] Overduin, J.M. and Wesson, P.S. (1997) Physics Reports, 283, 303-378.

http://dx.doi.org/10.1016/S0370-1573(96)00046-4

[6] Weinberg, S. (1972) Gravitation and Cosmology. John Wiley & Sons, New York.

[7] Eisenhart, L.P. (1947) An Introduction to Differential Geometry, Chapter 23: Systems of Partial Differential Equations of the First Order, Mixed Systems. Princeton University Press, Princeton.

[8] Misner, C., Thorne, K. and Wheeler, J. (1970) Gravitation. W.H. Freeman and Company, San Francisco, 840.

[9] Landau, L.D. and Lifshitz, E.M. (1975) The Classical Theory of Fields. 4th Edition, Pergamon Press, New York, 235.

[10] Feynman, R.P. (1949) Physical Review, 76, 749-759.

http://dx.doi.org/10.1103/PhysRev.76.749

[11] Villata, M. (2011) EPL, 94, 20001-p1-20001-p4.

[12] Hajdukovic, D.S. (2011) Astrophysics and Space Science, 334, 215-218.

http://dx.doi.org/10.1007/s10509-011-0744-4

[13] Hajdukovic, D.S. (2010) Astrophysics and Space Science, 330, 1-5.

http://dx.doi.org/10.1007/s10509-010-0387-x

[14] Ferragut, R., et al. (2011) Canadian Journal of Physics, 89, 17-24.

http://dx.doi.org/10.1139/P10-099

[15] Starkman, G.D. (2012) Philosophical Transactions of the Royal Society A, 369, 5018-5041.

http://dx.doi.org/10.1098/rsta.2011.0292

[16] Beach, R.J. (1999) Physics Essays, 12, 457-467.

http://dx.doi.org/10.4006/1.3025404