JAMP  Vol.2 No.8 , July 2014
Proximity Effect in Normal-Superconductor Hybrids at the Nanoscale
Abstract: We analyse the proximity effect in hybrid nanoscale junctions involving superconducting leads. We develop a general framework for the analysis of the proximity effect using the same theoretical methods typically employed for the analysis of conductance properties. We apply our method to a normal-superconductor tunnel contact and compare our results to previous results.
Cite this paper: Soller, H. (2014) Proximity Effect in Normal-Superconductor Hybrids at the Nanoscale. Journal of Applied Mathematics and Physics, 2, 745-752. doi: 10.4236/jamp.2014.28082.

[1]   Hofstetter, L., Csonka, S., Nygard, J. and Schonenberger, C. (2009) Cooper Pair Splitter Realized in a Two-QuantumDot Y-Junction. Nature, 461, 960-963.

[2]   Machon, P., Eschrig, M. and Belzig, W. (2013) Nonlocal Thermoelectric Effects and Nonlocal Onsager Relations in a Three-Terminal Proximity-Coupled Superconductor-Ferromagnet Device. Physical Review Letters, 110, 047002.

[3]   Das, A., Ronen, Y., Heiblum, M., Mahalu, D., Kretinin, A.V. and Shtrikman, H. (2012) High-Efficiency Cooper Pair Splitting Demonstrated by Two-Particle Conductance Resonance and Positive Noise Cross-Correlation. Nature Communication, 3, 1165.

[4]   Borlin, J., Belzig, W. and Bruder, C. (2002) Full Counting Statistics of a Superconducting Beam Splitter. Physical Review Letters, 88, 197001.

[5]   Schindele, J., Baumgartner, A. and Schonenberger, C. (2012) Near-Unity Cooper Pair Splitting Efficiency. Physical Review Letters, 109, 157002.

[6]   Hofstetter, L., Csonka, S., Baumgartner, A., Fülop, G., d’Hollosy, S., Nygard, J. and Schonenberger, C. (2011) FiniteBias Cooper Pair Splitting. Physical Review Letters, 107, 136801.

[7]   Muzykantskii, B.A. and Khmelnitskii, D.E. (1994) Quantum Shot Noise in a Normal-Metal-Superconductor Point Contact. Physical Review B, 50, 3982-3987.

[8]   De Franceschi, S., Kouwenhoven, L., Schonenberger, C. and Wernsdorfer, W. (2010) Hybrid Superconductor-Quantum Dot Devices. Nature Nanotechnology, 5, 703-711.

[9]   Soller, H. and Komnik, A. (2011) Hamiltonian Approach to the Charge Transfer Statistics of Kondo Quantum Dots Contacted by a Normal Metal and a Superconductor. Physica E, 44, 425-429.

[10]   Cuevas, J.C., Martin-Rodero, A. and Levy Yeyati, A. (1996) Hamiltonian Approach to the Transport Properties of Superconducting Quantum Point Contacts. Physical Review B, 54, 7366.

[11]   Zawadowski, A. (1967) General Theory of Tunneling in Oxide Diodes. Physical Review, 163, 341.

[12]   Cluckie, J. and Barker, J.R. (1994) Two-Body Quantum Transport Theory of Interacting Electrons in Laterally Patterned Semiconductor 2DEG Structures. Semiconductor Science Technology, 9, 911.

[13]   Ossipov, A. and Kottos, T. (2004) Superconductor-Proximity Effect in Hybrid Structures: Fractality versus Chaos. Physical Review Letters, 92, 017004.

[14]   Cohen, M.H., Falicov, L.M. and Phillips, J.C. (1962) Superconductive Tunneling. Physical Review Letters, 8, 316-318.

[15]   Pérez-Willard, F., Cuevas, J.C., Sürgers, C., Pfundstein, P., Kopu, J., Eschrig, M. and Lohneysen, H.V. (2004) Determining the Current Polarization in Al/Co Nanostructured Point Contacts. Physical Review B, 69, 140502(R).

[16]   Eilenberger, G. (1968) Transformation of Gorkov’s Equation for Type II Superconductors into Transport-Like Equations. Z. Physics, 214, 195-213.

[17]   Governale, M., Pala, M.G. and Konig, J. (2008) Real-Time Diagrammatic Approach to Transport through Interacting Quantum Dots with Normal and Superconducting Leads. Physical Review B, 77, 134513.

[18]   Soller, H. and Komnik, A. (2011) Charge Transfer Statistics and Entanglement in Normal-Quantum Dot-Superconductor Hybrid Structures. European Physical Journal D, 63, 3-8.

[19]   Soller, H., Hofstetter, L., Csonka, S., Levy Yeyati, A., Schonenberger, C. and Komnik, A. (2012) Kondo Effect and Spin-Active Scattering in Ferromagnet-Superconductor Junctions. Physical Review B, 85, 174512.

[20]   Benjamin, C. (2006) Crossed Andreev Reflection as a Probe for the Pairing Symmetry of Ferromagnetic Superconductors. Physical Review B, 74, 180503.

[21]   Soller, H. and Komnik, A. (2012) P-Wave Cooper Pair Splitting. Beilstein Journal of Nanotechnology, 3, 493-500.

[22]   Nilsson, J., Akhmerov, A.R. and Beenakker, C.W.J. (2008) Splitting of a Cooper Pair by a Pair of Majorana Bound States. Physical Review Letters, 101, 120403.

[23]   Fazio, R. and Raimondi, R. (1998) Resonant Andreev Tunneling in Strongly Interacting Quantum Dots. Physical Review Letters, 80, 2913.

[24]   Soller, H. (2013) Non-Linear Transport Properties of Hybrid Nanoelectronic Devices. Logos Verlag Berlin GmbH, Berlin.

[25]   Martin, T. (1996) Wave Packet Approach to Noise in NS Junctions. Physical Letters A, 220, 137-142.

[26]   Thouless, D.J. (1960) Strong-Coupling Limit in the Theory of Superconductivity. Physical Review, 117, 1256.

[27]   Smith, H.G. and Wilhelm, J.O. (1935) Superconductivity. Reviews of Modern Physics, 7, 237.

[28]   Hilsch, P. And Hilsch, R. (1961) Zum Verhalten von Supraleitern im Kontakt mit Normalleitern. Naturwissenschaften, 48, 549.

[29]   Ketterson, J.B. and Song, S.N. (1999) Superconductivity. Cambridge University Press, Cambridge.

[30]   Nagato, Y., Nagai, K. and Hara, J.I. (1993) Theory of the Andreev Reflection and the Density of States in Proximity Contact Normal-Superconducting Infinite Double-Layer. Journal of Low Temperature Physics, 93, 33-56.

[31]   Ashida, M., Hara, J.I. and Nagai, K. (1992) Superconducting Transition Temperature of Proximity-Contact Superconducting-Normal Double Layers. Physical Review B, 45, 828.

[32]   Zaitsev, A.V. (1984) Quasiclassical Equations of the Theory of Superconductivity for Contiguous Metals and the Properties of Constricted Microcontacts. Journal of Experimental and Theoretical Physics, 86, 1742-1758.