AiM  Vol.4 No.8 , June 2014
Induced Transcriptional Expression of Bacillus subtilis Amino Acid Permease yvbW in Response to Leucine Limitation
Author(s) Sean M. Rollins
ABSTRACT

T box sequences have been identified upstream of a large number of uncharacterized genes such as transporters in bacterial genomes. Expression of each T box family gene is induced by limitation for a specific amino acid. T box family genes contain an untranslated leader region containing a factor-independent transcriptional terminator upstream of the structural genes. The anticodon of uncharged tRNA base-pairs with the leader mRNA at a codon referred to as the specifier sequence, inducing formation of an alternative antiterminator structure, allowing expression of the structural genes. There are several additional conserved primary sequence and secondary structural elements. Analysis of these elements can be used to predict the identity of the specifier codon and the amino acid signal. Bacillus subtilis hypothetical amino acid permease, yvbW, was analyzed as an example of this type of transcriptional regulatory prediction suggesting expression in response to leucine limitation. Expression was induced up to 130-fold in response to leucine limitation, utilizing a yvbW-lacZ transcriptional fusion. These data suggest that hypothetical amino acid permease YvbW may participate in leucine metabolism. A yvbW knockout strain was generated, although the substrate specificity for the putative amino acid permease was not identified.


Cite this paper
Rollins, S. (2014) Induced Transcriptional Expression of Bacillus subtilis Amino Acid Permease yvbW in Response to Leucine Limitation. Advances in Microbiology, 4, 484-492. doi: 10.4236/aim.2014.48053.
References
[1]   Green, N.J., Grundy, F.J. and Henkin, T.M. (2010) The T Box Mechanism: tRNA as a Regulatory Molecule. FEBS Letters, 584, 318-324. http://dx.doi.org/10.1016/j.febslet.2009.11.056

[2]   Gutiérrez-Preciado, A., Henkin, T.M., Grundy, F.J., Yanofsky, C. and Merino, E. (2009) Biochemical Features and Functional Implications of the RNA-Based T-Box Regulatory Mechanism. Microbiology and Molecular Biology Reviews, 73, 36-61. http://dx.doi.org/10.1128/MMBR.00026-08

[3]   Grundy, F.J. and Henkin, T.M. (1993) tRNA as a Positive Regulator of Transcription Antitermination in B. subtilis. Cell, 74, 475-482. http://dx.doi.org/10.1016/0092-8674(93)80049-K

[4]   Grundy, F.J., Rollins, S.M. and Henkin, T.M. (1994) Interaction between the Acceptor end of tRNA and the T Box Stimulates Antitermination in the Bacillus subtilis tyrS Gene: A New Role for the Discriminator Base. Journal of Bacteriology, 176, 4518-4526.

[5]   Grigg, J.C., Chen, Y., Grundy, F.J., Henkin, T.M., Pollack, L. and Ke, A. (2013) T Box RNA Decodes both the Information Content and Geometry of tRNA to Affect Gene Expression. Proceedings of the National Academy of Sciences of the United States of America, 110, 7240-7245.
http://dx.doi.org/10.1073/pnas.1222214110

[6]   Rollins, S.M., Grundy, F.J. and Henkin, T.M. (1997) Analysis of cis-Acting Sequence and Structural Elements Required for Antitermination of the Bacillus subtilis tyrS Gene. Molecular Microbiology, 25, 411-421. http://dx.doi.org/10.1046/j.1365-2958.1997.4851839.x

[7]   Winkler, W.C., Grundy, F.J., Murphy, B.A. and Henkin, T.M. (2001) The GA Motif: An RNA Element Common to Bacterial Antitermination Systems, rRNA, and Eukaryotic RNAs. RNA, 7, 1165-1172. http://dx.doi.org/10.1017/S1355838201002370

[8]   Putzer, H., Gendron, N. and Grunberg-Manago, M. (1992) Coordinate Expression of the Two Threonyl-tRNA Synthetase Genes in Bacillus subtilis: Control by Transcriptional Antitermination Involving a Conserved Regulatory Sequence. The EMBO Journal, 11, 3117-3127.

[9]   Yousef, M.R., Grundy, F.J. and Henkin, T.M. (2003) tRNA Requirements for glyQS Antitermination: A New Twist on tRNA. RNA, 9, 1148-1156. http://dx.doi.org/10.1261/rna.5540203

[10]   Saad, N.Y., Stamatopoulou, V., Brayé, M., Drainas, D., Stathopoulos, C. and Becker, H.D. (2013) Two-Codon T-Box Riboswitch Binding Two tRNAs. Proceedings of the National Academy of Sciences of the United States of America, 110, 12756-127561. http://dx.doi.org/10.1073/pnas.1304307110

[11]   Wels, M., Groot Kormelink, T., Kleerebezem, M., Siezen, R.J. and Francke, C. (2008) An in Silico Analysis of T-Box Regulated Genes and T-Box Evolution in Prokaryotes, with Emphasis on Prediction of Substrate Specificity of Transporters. BMC Genomics, 9, 330. http://dx.doi.org/10.1186/1471-2164-9-330

[12]   Vitreschak, A.G., Mironov, A.A., Lyubetsky, V.A. and Gelfand, M.S. (2008) Comparative Genomic Analysis of T-Box Regulatory Systems in Bacteria. RNA, 14, 717-735.
http://dx.doi.org/10.1261/rna.819308

[13]   Irnov I., Sharma, C.M., Vogel, J. and Winkler, W.C. (2010) Identification of Regulatory RNAs in Bacillus subtilis. Nucleic Acids Research, 38, 6637-6651. http://dx.doi.org/10.1093/nar/gkq454

[14]   Henkin, T.M. (2009) Analysis of tRNA-Directed Transcription Antitermination in the T box System in Vivo. Methods in Molecular Biology, 540, 281-290. http://dx.doi.org/10.1007/978-1-59745-558-9_20

[15]   Zuber, P. and Losick, R. (1987) Role of AbrB in Spo0A- and Spo0B-Dependent Utilization of a Sporulation Promoter in Bacillus subtilis. Journal of Bacteriology, 169, 2223-2230.

[16]   Nakano, M.M. and Zuber, P. (1989) Cloning and Characterization of srfB, a Regulatory Gene Involved in Surfactin Production and Competence in Bacillus subtilis. Journal of Bacteriology, 171, 5347-5353.

[17]   Henkin, T.M., Glass, B.L. and Grundy, F.J. (1992) Analysis of the Bacillus subtilis tyrS Gene: Conservation of a Regulatory Sequence in Multiple tRNA Synthetase Genes. Journal of Bacteriology, 174, 1299-1306.

[18]   Zeigler, D.R. (2013) Bacillus Genetic Stock Center. http://www.bgsc.org/

[19]   Anagnostopoulos, C. and Spizizen, J. (1961) Requirements for Transformation in Bacillus subtilis. Journal of Bacteriology, 81, 741-746.

[20]   Miller, J. (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

[21]   Barbe, V., Cruveiller, S., Kunst, F., Lenoble, P., Meurice, G., Sekowska, A., Vallenet, D., Wang, T., Moszer, I., Médigue, C. and Danchin, A. (2009) From a Consortium Sequence to a Unified Sequence: The Bacillus subtilis 168 Reference Genome a Decade Later. Microbiology, 155, 1758-1775. http://dx.doi.org/10.1099/mic.0.027839-0

[22]   Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., Bertero, M.G., Bessières, P., Bolotin, A., Borchert, S., Borriss, R., Boursier, L., Brans, A., Braun, M., Brignell, S.C., Bron, S., Brouillet, S., Bruschi, C.V., Caldwell, B., Capuano, V., Carter, N.M., Choi, S.K., Codani, J.J., Connerton, I.F., Danchin, A., et al. (1997) The Complete Genome Sequence of the Gram-Positive Bacterium Bacillus subtilis. Nature (London), 390, 249-256. http://dx.doi.org/10.1038/36786

[23]   Grundy, F.J. and Henkin, T.M. (1991) The rpsD Gene, Encoding Ribosomal Protein S4, Is Autogenously Regulated in Bacillus subtilis. Journal of Bacteriology, 173, 4595-4602.

[24]   Steinmetz, M. and Richter, R. (1994) Plasmids Designed to Alter the Antibiotic Resistance Expressed by Insertion Mutations in Bacillus subtilis, through in Vivo Recombination. Gene, 142, 79-83. http://dx.doi.org/10.1016/0378-1119(94)90358-1

[25]   Wang, J., Henkin, T.M. and Nikonowicz, E.P. (2010) NMR Structure and Dynamics of the Specifier Loop Domain from the Bacillus subtilis tyrS T Box Leader RNA. Nucleic Acids Research, 38, 3388-3398. http://dx.doi.org/10.1093/nar/gkq020

[26]   Belitsky, B.R., Gustafsson, M.C.U., Sonenshein, A.L. and Von Wachenfeldt, C. (1997) An lrp-Like Gene of Bacillus subtilis Involved in Branched-Chain Amino Acid Transport. Journal of Bacteriology, 179, 5448-5457.

[27]   Nicolas, P., Mader, U., Dervyn, E., Rochat, T., Leduc, A., Pigeonneau, N., Bidnenko, E., Marchadier, E., Hoebeke, M., Aymerich, S., Becher, D., Bisicchia, P., Botella, E., Delumeau, O., Doherty, G., Denham, E.L., Fogg, M.J., Fromion, V., Goelzer, A., Hansen, A., Hartig, E., Harwood, C.R., Homuth, G., Jarmer, H., Jules, M., Klipp, E., Le Chat, L., Lecointe, F., Lewis, P., Liebermeister, W., March, A., Mars, R.A., Nannapaneni, P., Noone, D., Pohl, S., Rinn, B., Rugheimer, F., Sappa, P.K., Samson, F., Schaffer, M., Schwikowski, B., Steil, L., Stülke, J., Wiegert, T., Devine, K.M., Wilkinson, A.J., van Dijl, J.M., Hecker, M., Volker, U., Bessieres, P. and Noirot, P. (2012) Condition-Dependent Transcriptome Reveals High-Level Regulatory Architecture in Bacillus subtilis. Science, 335, 1103-1106.
http://dx.doi.org/10.1126/science.1206848

[28]   Rasmussen, S., Nielsen, H.B. and Jarmer, H. (2009) The Transcriptionally Active Regions in the Genome of Bacillus subtilis. Molecular Microbiology, 73, 1043-1057. http://dx.doi.org/10.1111/j.1365-2958.2009.06830.x

[29]   Chopin, A., Biaudet, V. and Ehrlich, S.D. (1998) Analysis of the Bacillus subtilis Genome Sequence Reveals Nine New T-Box Leaders. Molecular Microbiology, 29, 662-664.
http://dx.doi.org/10.1046/j.1365-2958.1998.00912.x

[30]   Wray, L.V., Ferson, A.E., Rohrer, K. and Fisher, S.H. (1996) TnrA, a Transcription Factor Required for Global Nitrogen Regulation in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 93, 8841-8845. http://dx.doi.org/10.1073/pnas.93.17.8841

[31]   Brechtel, C.E. and King, S.C. (1998) 4-Aminobutyrate (GABA) Transporters from the Amine-Polyamine-Choline Superfamily: Substrate Specificity and Ligand Recognition Profile of the 4-Aminobutyrate Permease from Bacillus subtilis. Biochemical Journal, 333, 565-571.

 
 
Top