JEMAA  Vol.1 No.2 , June 2009
Design of Axial-Flux Motor for Traction Application
Abstract
This paper deals with the design of high power – low dimensions axial-flux permanent-magnet motor intended for trac-tion application. First, two motor configurations are analytically designed and compared using finite element calcula-tion. Then, the configuration yielding the best performances is integrated and modelled with the whole traction chain under MATLAB/SIMULINK environment in order to demonstrate the motor operation on a large speed band.

Cite this paper
nullN. Chaker, I. Salah, S. Tounsi and R. Neji, "Design of Axial-Flux Motor for Traction Application," Journal of Electromagnetic Analysis and Applications, Vol. 1 No. 2, 2009, pp. 73-84. doi: 10.4236/jemaa.2009.12012.
References

[1]   Y. Amara, “Contribution à la conception et à la commande des machines synchrones à double excitation, Application au véhicule hybride,” Thèse de doctorat, université, PARIS VI, 2001.

[2]   A. Parviainen, “Design of axial-flux permanent-magnet low-speed machines and performance comparison between radial-flux and axial-flux machines,” thesis of doctorate, Lappeeranta University of Technology, Lappeeranta, Finland, 2005.

[3]   A. Parviainen, M. Niemela, J. Pyrhonen, J. Mantere, “Performance comparison between low-speed axial-flux and radial flux permanent-magnet machines including mechanical constraints,” Electric Machines and Drives, IEEE International Conference, pp. 1695–1702, 2005.

[4]   S. Tounsi, “Modélisation et optimisation de la motori- sation et de l’autonomie d’un véhicule électrique,” Thèse de doctorat en Génie Electrique, Ecole Nationale d’Ingénieurs de Sfax-Tunisie, 2006.

[5]   B. Multon and J. Bonal, “Les entra?nements électro- magnétiques directs: Diversité, contraintes et solutions, La conversion électromécanique directe,” - ENS Cachan – SEE, 1999.

[6]   P. Kurronen, “Torque vibration model of axial-flux surface-mounted permanent magnet synchronous machine,” Dissertation, Lappeenranta University of Technology, Finland, 2003.

[7]   B. Tounsi, “Etude comparative de groupes électrogènes embarqués à large gamme de vitesse variable associant machines à aimants permanents et conversion statique,” Thèse de Doctorat, INP Toulouse, 2006.

[8]   S. Tounsi, R. Neji, and F. Sellami, “Contribution à la conception d’un Actionneur à Aimants Permanents pour Véhicules Electriques en vue d’Optimiser l’Autonomie,” Revue Internationale de Génie Electrique, RIGE, Vol. 9/6, pp. 693-718, Edition Lavoisier, 2006.

[9]   C. Cavallaro, A. O. Di Tommaso, R. Miceli, A. Raciti, G. R. Galluzzo, and M. Trapanese, “Efficiency enhancement of permanent-magnet synchronous motor drives by online loss minimization approaches,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 4, pp. 1153-1160, 2005.

[10]   R. Neji, S. Tounsi, and F. Sellami, “Contribution to the definition of a permanent magnet motor with reduced production cost for the electrical vehicle propulsion,” European Transactions on Electrical Power, ETEP, Vol. 16, No. 4, pp. 437-460, 2006.

[11]   R. Neji, S. Tounsi, and F. Sellami, “Optimization and design for a radial flux permanent magnet motor for electric vehicle,” Journal of Electrical Systems, JES, Vol. 1, No. 4, 2005.

[12]   N. Chaker, “Conception et commande d’un moteur à aimant permanent à flux axial pour véhicule électrique,” Mémoire de Mastère en génie électrique, Ecole Nationale d’Ingénieurs de Sfax, Tunisie, 2006.

[13]   MAXWELL? 2D (2002) Student Version; A 2D Magnetostatic Problem.

[14]   F. Khatounian, S. Moreau, J. P. Louis, E. Monmasson, F. Louveau, and J. M. Alexandre, “Modeling and simulation of a hybrid dynamic system used in haptic interfaces,” Electrimacs, Hammamet, Tunisie, 2005.

[15]   G. Kayhan, A. A. Ahmed, and P. Halit, “Improving the performance of hysteresis direct torque control of IPMSM using active filter topology,” Sˉadhanˉa, Vol. 31, Part 3, pp. 245–258, 2006.

 
 
Top