A Topological Magueijo-Smolin Varying Speed of Light Theory, the Accelerated Cosmic Expansion and the Dark Energy of Pure Gravity

Show more

References

[1] Amendola, L. and Tsujikawa, S. (2010) Dark Energy: Theory and Observations. Cambridge University Press, Cambridge.

[2] Baryshev, Y. and Teerikorpi, P. (2002) Discovery of Cosmic Fractals. World Scientific, Singapore.

[3] Nottale, L. (2011) Scale Relativity. Imperial College Press, London.

[4] Ord, G. (1983) Fractal Space-Time. A geometric Analogue of Relativistic Quantum Mechanics. Journal of Physics A: Mathematical and General, 16, 1869.

http://dx.doi.org/10.1088/0305-4470/16/9/012

[5] El Naschie, M.S. (2011) Quantum Entanglement as a Consequence of a Cantorian Micro Space-Time Geometry. Journal of Quantum Information Science, 1, 50-53.

http://www.SCRIP.org/journal/jqis

[6] He, J.-H., et al. (2011) Quantum Golden Mean Entanglement Test as the Signature of the Fractality of Micro Space-Time. Nonlinear Science Letters B, 1, 45-50.

[7] El Naschie, M.S. (2009) The Theory of Cantorian Space-Time and High Energy Particle Physics (An Informal Review). Chaos, Solitons & Fractals, 41, 2635-2646.

http://dx.doi.org/10.1016/j.chaos.2008.09.059

[8] El Naschie, M.S. (2004) A Review of E-Infinity Theory and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236.

http://dx.doi.org/10.1016/S0960-0779(03)00278-9

[9] Mageuijo, J. and Smolin, L. (2001) Lorentz Invariance with an Invariant Energy Scale. arXiv: hep-th/0112090V2.

[10] Mageuijo, J. (2003) Faster Than the Speed of Light. William Heinemann, London.

[11] El Naschie, M. S. (2006) On an Eleven Dimensional E-Infinity Fractal Space-Time Theory. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 407-409.

[12] El Naschie, M. S. (2006) The “Discrete” Charm of Certain Eleven Dimensional Space-Time Theory. International Journal of Nonlinear Sciences and Numerical Simulation, 7, 477-481.

[13] Duff, M. (1999) The World in Eleven Dimensions. IOP Publishing Ltd., Bristol.

[14] Yau, S. T. and Nadis, S. (2010) The Shape of Inner Space. Basic Book, Persons Group, New York.

[15] Randal, L. (2005) Warped Passages. Allen Lane-Penguin Books, London.

[16] Penrose, R. (2004) The Road to Reality. Jonathan Cape, London.

[17] Becker, K., Becker, M. and Schwarz, J. (2007) String Theory and M-Theory. Cambridge University Press, Cambridge.

[18] Schwarz, P.M. and Schwarz, J.H. (2004) Special Relativity from Einstein to Strings. Cambridge University Press, Cambridge.

http://dx.doi.org/10.1017/CBO9780511755811

[19] Hardy, L. (1993) Non-Locality of Two Particles without Inequalities for Almost All Entangled States. Physical Review Letters, 71, 1665-1668.

http://dx.doi.org/10.1103/PhysRevLett.71.1665

[20] Bengtsson, I. and Zyczkowski, K. (2008) Geometry of Quantum States. Cambridge University Press, Cambridge.

[21] Nakajima, S. and Murayama, Y. (Eds.) (1996) Foundations of Quantum Mechanics in the Light of New Technologies. World Scientific, Singapore.

[22] Braginsky, V. and Vyatchanin, S.P. (1981) Dokl. Akad. Nauk SSSR, 259, 570 [Sov. Phys. Dokl., 27, (1982), 478].

[23] He, J.H. and El Naschie, M.S. (2012) On the Monadic Nature of Quantum Gravity as Highly Structured Golden Ring Spaces and Spectra. Fractal Space-Time and Non-Commutative Geometry in Quantum and High Energy Physics, 3, 94-98, Asian Academic Publisher Limited, Hong Kong.

[24] El Naschie, M.S. (2013) A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory. Journal of Quantum Information Since, 3, 23-26.

[25] Marek-Crnjac, L., He, J.H. and El Naschie, M.S. (2013) Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology. International Journal of Modern Nonlinear Theory and Application, 2, 78-88.

[26] El Naschie, M.S. (2013) A Rindler-KAM Space-Time Geometry and Scaling the Planck Scale Solves Quantum Relativity and Explains Dark Energy. International Journal of Astronomy and Astrophysics, 3, 483-493.

http://dx.doi.org/10.4236/ijaa.2013.34056

[27] El Naschie, M.S. (2013) From Yang-Mills Photon in Curved Space-Time to Dark Energy Density. Journal of Quantum Information Science, 3, 121-126.

http://dx.doi.org/10.4236/jqis.2013.34016

[28] Kheyfets, A. and Wheeler, J.A. (1986) Boundary of a Boundary Principle and Geometric Structure of Field Theories. International Journal of Theoretical Physics, 25, 573-580.

[29] Hartle, J.P. (1983) Wave Function of the Universe. Physical Review D, 28, 2960.

http://dx.doi.org/10.1103/PhysRevD.28.2960

[30] Marek-Crnjac, L. (2013) Cantorian Space-Time Theory—The Physics of Empty Sets in Connection with Quantum Entanglement and Dark Energy. Lambert Academic Publishing, Saarbrücken.