JST  Vol.4 No.2 , June 2014
Application of Nanoparticles in Quartz Crystal Microbalance Biosensors
Nanoparticles are playing an increasingly important role in the development of biosensors. The sensitivity and performance of biosensors are being improved by using Nanoparticles for their construction. The use of these Nanoparticles has allowed the introduction of many new signal transduction technologies in biosensors. In this report, a comprehensive review of application of nanoparticles in Quartz Crystal Microbalance biosensors is presented. The main advantages of QCM in sensing fields include high sensitivity, high stability, fast response and low cost. In addition, it provides label-free detection capability for bio-sensing applications. Firstly, basic QCM’s design and characterization are described. Next, QCM biosensors based on modification of quartz substrate structure and their applications are digested. Nanoparticles and their utilizationin analysis are then illustrated. These include Nanoparticles in bio applications that cover Nanoparticles in Quartz Crystal Microbalance biosensors.

Cite this paper
Heydari, S. and Haghayegh, G. (2014) Application of Nanoparticles in Quartz Crystal Microbalance Biosensors. Journal of Sensor Technology, 4, 81-100. doi: 10.4236/jst.2014.42009.
[1]   Agasti, S.S., Rana, S., Park, M.H., Kim, C.K., You, C.C. and Rotello, V.M. (2010) Nanoparticles for Detection and Diagnosis. Advanced Drug Delivery Reviews, 62, 316-328.

[2]   Durner, J. (2009) Clinical Chemistry: Challenges for Analytical Chemistry and the Nanosciences from Medicine. Angewandte Chemie International Edition, 496, 1026-1051.

[3]   Palchetti, I. and Mascini, M. (2008) Nucleic Acid Biosensors for Environmental Pollution Monitoring. Analyst, 133, 846-854.

[4]   Arbab Zavar, M.H., Heydari, S., Rounaghi, Gh., Eshghi, H. and Azizi-Toupkanloo, H. (2012) Electrochemical Behavior of Para-Nitroaniline at a New Synthetic Crownether-Silver Nanoparticle Modified Carbon Paste Electrode. Analytical Methods, 4, 953-958.

[5]   Rounaghi, G.H., Mohamadzadehkakhki, R. and Azizi-Toupkanloo, H. (2012) Voltammetric Determination of 4-Nitro-phenol Using a Modified Carbon Paste Electrode Based on a New Synthetic Crown Ether/Silver Nanoparticles. Material Science and Engineering C, 32, 172-177.

[6]   Cady, W.G. (1946) Piezoelectricity. McGraw-Hill, New York and London.

[7]   Curie, J. and Curie, P. (1880) Mull Historical Society, Paris, 1880, 90.

[8]   Lippman, G. (1881) Principe de conservation de lelectricite. Annales de Chimie et de Physique, 24, 145-178.

[9]   Dwyer, M.A. and Hellinga, H.W. (2004) Periplasmic Binding Proteins: A Versatile Superfamily for Protein Engineering. Current Opinion in Structural Biology, 14, 495-504.

[10]   Rabe, J., Buttgenbach, S., Schroder, J. and Hauptmann, P. (2003) Monolithic Miniaturized Quartz Microbalance Array and Its Application to Chemical Sensor Systems for Liquids. IEEE Sensors Journal, 3, 361-368.

[11]   Sauerbrey, G. (1959) Verwendung von Schwingquarzenzur Wagungdunner Schichten und zur Mikrowagung. Zeitschrift für Physik, 155, 206-222.

[12]   Kanazawa, K. and Gordon Ii, J.G. (1985) The Oscillation Frequency of a Quartz Resonator in Contact with Liquid. Analytica Chimica Acta, 175, 99-105.

[13]   Ward, M.D. and Delawski, E.J. (1991) Radial Mass Sensitivity of the Quartz Crystal Microbalance in Liquid Media. Analytical Chemistry, 63, 886-890.

[14]   Lin, Z., Yip, C.M., Scott Joseph, I. and Ward, M.D. (1993) Operation of an Ultrasensitive 30 MHz Quartz Crystal Microbalance in Liquids. Analytical Chemistry, 65, 1546-1551.

[15]   Rodahl, M. and Kasemo, B. (1996) A Simple Setup to Simultaneously Measure Liquid Deposits on a QCM Electrode. Sensors and Actuators B, 37, 111-116.

[16]   Muramatsu, H., Tamiya, E. and Karube, I. (1988) Computation of Equivalent Circuit Parameters of Quartz Crystals in Contact with Liquid and Study of Liquid Properties. Analytical Chemistry, 60, 2142-2146.

[17]   Rodahl, M., Hook, F., Fredriksson, C., Keller, C.A., Krozer, A., Brzezinski, P., Voinova, M. and Kasemo, B. (1997) Simultaneous Frequency and Dissipation Factor QCM Measurements of Biomolecular Adsorption and Cell Adhesion. Faraday Discussions, 107, 229-246.

[18]   Penza, M., Cassano, G., Aversa, P., Antolini, F., Cusano, A., Cutolo, A., Giordano, M. and Nicolais, L. (2004) Alcohol Detection Using Carbon Nanotubes Acoustic and Optical Sensors. Applied Physics Letters, 85, 2379-2381.

[19]   Matsuguchi, M. and Uno, T. (2006) Molecular Imprinting Strategy for Solvent Molecules and Its Application for QCM-Based VOC Vapor Sensing. Sensors and Actuators B, 113, 94-99.

[20]   Brousseau III, L.C., Aurentz, D.J., Benesi, A.J. and Mallouk, T.E. (1997) Molecular Design of Intercalation-Based Sensors. 2. Sensing of Carbon Dioxide in Functionalized Thin Films of Copper Octanediylbis(phosphonate). Analytical Chemistry, 69, 679-687.

[21]   Ding, B., Kim, J., Miyazaki, Y. and Shiratori, S. (2004) Electrospun Nanofibrous Membranes Coated Quartz as Gas Sensor for NH3 Detection. Sensors and Actuators B, 101, 373-380.

[22]   Wang, X.H., Zhang, J., Zhu, Z.Q. and Zhu, J.Z. (2007) Humidity Sensing Properties of Pd2+-Doped ZnO Nanotetrapods. Applied Surface Science, 253, 3168-3173.

[23]   King, W.H. (1964) Piezoelectric Sorption Detector. Analytical Chemistry, 36, 1735-1739.

[24]   Bottom, V.E. (1982) Introduction to Quartz Crystal Unit Design. Van Nostrand Reinhold, New York.

[25]   Bruckenstein, S., Fensore, A., Li, Z.F. and Hillman, A.R. (1994) Dual Quartz Crystal Microbalance Compensation Using a Submerged Reference Crystal. Effect of Surface Roughness and Liquid Properties. Journal of Electroanalytical Chemistry, 370, 189-195.

[26]   Bruckenstein, S., Michalskl, M., Fensore, A., Zhufen, L.I. and Hillman, A.R. (1994) Dual Quartz Crystal Oscillator Circuit. Minimizing Effects Due to Liquid Viscosity, Density, and Temperature. Analytical Chemistry, 66, 1847-1852.

[27]   Dunham, G.C., Benson, N.H., Petelenz, D. and Janata, J. (1995) Dual Quartz Crystal Microbalance. Analytical Chemistry, 67, 267-272.

[28]   Uno, T. (1996) Frequency Control Symposium, 50th, Proceedings of the 1996 IEEE International, 526-531.

[29]   Cooper, M.A. and Singleton, V.T. (2007) A survey of the 2001 to 2005 Quartz Crystal Microbalance Biosensor Literature: Applications of Acoustic Physics to the Analysis of Biomolecular Interactions. Journal of Molecular Recognition, 20, 154-184.

[30]   ArbabZavar, M.H., Heydari, S., Rounaghi, G. and Ashraf, N. (2011) Graphite Disk Lanthanum(III)-Selective Electrode Based on Benzo-15-Crown-5. Journal of the Electrochemical Society, 158, F142-F146.

[31]   Rounaghi, G.H. and Adzadeh Kakhki, R.M. (2011) Highly Selective and Sensitive Coated-Wire Yttrium (III) Cation Selective Electrode Based on Kryptofix-22DD. Journal of the Electrochemical Society, 158, F121-F125.

[32]   Arbab Zavar, M.H., Heydari, S. and Rounaghi, G. (2013) Electrochemical Determination of Salicylic Acid at a New Biosensor Based on Polypyrrole-Banana Tissue Composite. Arabian Journal for Science and Engineering, 38, 29-36.

[33]   Zadeh kakhki, R.M., Ronagi, G.H. and Sadeghian, H. (2011) A New Cerium (III) Ion Selective Electrode Based on 2,9-Dihydroxy-1,10-Diphenoxy-4,7-Dithia Decane, a Novel Synthetic Ligand. Electrochimica Acta, 56, 9756-9761.

[34]   Arbab Zavar, M.H., Heydari, S., Rounaghi, G.H., Eshghi, H. and Sadeghian, H. (2012) Nano-Level Monitoring of Yt- trium by a Novel PVC-Membrane Sensor Based on 2,9-dihydroxy-1,10-diphenoxy-4,7-dithiadecane. Croatica Chemi- ca Acta, 85, 131-137.

[35]   Zadeh Kakhki, R.M. and Rounaghi, G. (2011) Selective Uranyl Cation Detection by Polymeric Ion Selective Electrode Based on Benzo-15-Crown-5. Materials Science & Engineering: C, 31, 1637-1642.

[36]   Carmon, K. (2004) Development of a QCM Biosensor Using Receptor Proteins to Detect the Binding of Small Ligands. Thesis. Clarkson University, Potsdam.

[37]   Marx, K.A. (2003) Quartz Crystal Microbalance: A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution-Surface Interface. Biomacromolecules, 4, 1099-1120.

[38]   Thompson, M. and Hayward, G.L. (1997) Mass Response of the Thickness-Shear Mode Acoustic Wave Sensor in Liquids as a Central Misleading Dogma. IEEE International Frequency Control Symposium, Orlando, 28-30 May 1997, 114-119.

[39]   Janshoff, A., Galla, H.J. and Steinem, C. (2000) Piezoelectric Mass-Sensing Devices as Biosensors. An Alternative to Optical Biosensors. Angewandte Chemie International Edition, 39, 4004-4032.

[40]   Cooper, M.A. (2003) Biosensor Profiling of Molecular Interactions in Pharmacology. Current Opinion in Pharmacology, 3, 557-562.

[41]   Cooper, M.A. (2006) Resonant Acoustic Profiling (RAPTM) and Rupture Event Scanning (REVSTM). In: Steinem, C. and Janshoff, A., Eds., Piezoelectric Sensors, Vol. 5, Springer-Verlag, Berlin, Heidelberg, 449-481.

[42]   Cote, G.L., Lec, R.M. and Pishko, M.V. (2003) Emerging Biomedical Sensing Technologies and Their Applications. IEEE Sensors Journal, 3, 251-266.

[43]   Hook, F. and Kasemo, B. (2006) In the QCM-D Technique. In: Steinem, C. and Janshoff, A., Eds., Piezoelectric Sensors, Vol. 5, Springer-Verlag, Berlin, Heidelberg, 425-449.

[44]   Steinem, C. and Janshoff, A. (2006) In Piezoelectric Sensors. Springer-Verlag, Berlin, Heidelberg.

[45]   Braunhut, S., McIntosh, D., Vorotnikova, E., Zhou, T. and Marx, K.A. (2005) Detection of Apoptosis and Drug Resistance of Human Breast Cancer Cells to Taxane Treatments Using Quartz Crystal Microbalance Biosensor Technology. ASSAY and Drug Development Technologies, 3, 77-88.

[46]   Kim, Y.S., Niazi, J.H. and Gu, M.B. (2009) Specific Detection of Oxytetracycline Using DNA Aptamer-Immobilized Interdigitated Array Electrode Chip. Analytica Chimica Acta, 634, 250-254.

[47]   Proske, D., Blank, M., Buhmann, R. and Resch, A. (2005) Aptamers—Basic Research, Drug Development, and Clinical Applications. Applied Microbiology and Biotechnology, 69, 367-374.

[48]   Xie, S. and Walton, S.P. (2009) Application and Analysis of Structure-Switching Aptamers for Small Molecule Quantification. Analytica Chimica Acta, 638, 213-219.

[49]   Fang, L., Lu, Z., Wei, H. and Wang, E. (2008) A Electrochemiluminescence Aptasensor for Detection of Thrombin Incorporating the Capture Aptamer Labeled with Gold Nanoparticles Immobilized onto the Thio-Silanized ITO Electrode. Analytica Chimica Acta, 628, 80-86.

[50]   Farokhzad, O.C., Jon, S., Khademhosseini, A., Tran, T.N., Lavan, D.A. and Langer, R. (2004) Nanoparticle-Aptamer Bioconjugates: A New Approach for Targeting Prostate Cancer Cells. Cancer Research, 64, 7668-7672.

[51]   Yao, C.Y., Zhu, T.Y., Qi, Y.Z., Zhao, Y.H., Xia, H. and Fu, W.L. (2010) Development of a Quartz Crystal Microbalance Biosensor with Aptamers as Bio-Recognition Element. Sensors, 10, 5859-5871.

[52]   Wu, V.C.H., Chen, S.H. and Lin, C.S. (2007) Real-Time Detection of Escherichia coli O157:H7 Sequences Using a Circulating-Flow System of Quartz Crystal Microbalance. Biosensors and Bioelectronics, 22, 2967-2975.

[53]   Janeway Jr., C.A., Walport, M.J. and Travers, P. (2005) Immunobiology: The Immune System in Health and Disease. 6th Edition, Taylor & Francis Group, New York.

[54]   Ahirwal, G.K. and Mitra, C.K. (2010) Gold Nanoparticles Based Sandwich Electrochemical Immunosensor. Biosensors and Bioelectronics, 25, 2016-2020.

[55]   Noble, J., Thobhani, S., Attree, S., Boyd, R., Kumarswami, N., Szymanski, M. and Porter, A. (2010) Bioconjugation and Characterisation of Gold Colloid-Labelled Proteins. Journal of Immunological Methods, 356, 60-69.

[56]   Fritz, J. (2008) Cantilever Biosensors. Analyst, 133, 855-863.

[57]   Wu, G.H., Datar, R.H., Hansen, K.M., Thundat, T., Cote, R.J. and Majumdar, A. (2001) Bioassay of Prostate-Specific Antigen (PSA) Using Microcantilevers. Nature Biotechnology, 19, 856-860.

[58]   Milburn, C., Zhou, J., Bravo, O., Kumar, C. and Soboyejo, W.O. (2005) Sensing Interactions between Vimentin Antibodies and Antigens for Early Cancer Detection. Journal of Biomedical Nanotechnology, 1, 30-38.

[59]   Chu, X., Zhao, Z.L., Shen, G.L. and Yu, R.Q. (2006) Quartz Crystal Microbalance Immunoassay with Dendritic Amplification Using Colloidal Gold Immunocomplex. Sensors and Actuators B, 114, 696-704.

[60]   Jin, X., Jin, X., Chen, L., Jiang, J., Shen, G. and Yu, R. (2009) Piezoelectric Immunosensor with Gold Nanoparticles Enhanced Competitive Immunoreaction Technique for Quantification of Aflatoxin B1. Biosensors & Bioelectronics, 24, 2580-2585.

[61]   Ward, M.D. and Ebersole, R.C. (1996) Piezoelectric Specific Binding Assay with Mass Amplified Reagents. US Patent No. 5501986.

[62]   Su, X.D., Chew, F.T. and Li, S.F.Y. (2000) Design and Application of Piezoelectric Quartz Crystal-Based Immunoassay. Analytical Sciences, 16, 107-114.

[63]   Liu, T., Tang, J. and Jiang, L. (2004) The Enhancement Effect of Gold Nanoparticles as a Surface Modifier on DNA Sensor Sensitivity. Biochemical and Biophysical Research Communications, 313, 3-7.

[64]   Chu, P.T., Lin, C.S., Chen, W.J., Chen, C.F. and Wen, H.W. (2012) Detection of Gliadin in Foods Using a Quartz Crystal Microbalance Biosensor that Incorporates Gold Nanoparticles. Journal of Agricultural and Food Chemistry, 60, 6483-6492.

[65]   Kaewphinit, T., Santiwatanakul, S. and Chansiri, K. (2012) Gold Nanoparticle Amplification Combined with Quartz Crystal Microbalance DNA Based Biosensor for Detection of Mycobacterium Tuberculosis. Sensors & Transducers Journal, 146, 156-163.

[66]   Weizmann, Y., Patolsky, F. and Willner, I. (2001) Amplified Detection of DNA and Analysis of Single-Base Mismatches by the Catalyzed Deposition of Gold on Au-Nanoparticles. Analyst, 126, 1502-1504.

[67]   Zhao, H.Q., Lin, L., Tang, J., Duan, M.X. and Jiang, L. (2001) Enhancement of the Immobilization and Discrimination of DNA Probe on a Biosensor Using Gold Nanoparticles. Chinese Science Bulletin, 46, 1074-1077.

[68]   Willner, I., Patolsky, F., Weimann, Y. and Willner, B. (2002) Amplified Detection of Single-Base Mismatches in DNA Using Microgravimetric Quartz-Crystal-Microbalance Transduction. Talanta, 56, 847-856.

[69]   Liu, T., Tang, J. and Jiang, L. (2002) Sensitivity Enhancement of DNA Sensors by Nanogold Surface Modification. Biochemical and Biophysical Research Communications, 295, 14-16.

[70]   Fritzsche, W. and Taton, T.A. (2003) Metal Nanoparticles as Labels for Heterogeneous, Chip-Based DNA Detection. Nanotechnology, 14, R63-R73.

[71]   Liu, T., Tang, J., Han, M.M. and Jiang, L. (2003) Surface Modification of Nanogold Particles in DNA Detection with Quartz Crystal Microbalance. Chinese Science Bulletin, 48, 873-875.

[72]   Ha, T.H., Kim, S., Lim, G. and Kim, K. (2004) Influence of Liquid Medium and Surface Morphology on the Response of QCM during Immobilization and Hybridization of Short Oligonucleotides. Biosensors and Bioelectronics, 20, 378-389.

[73]   He, F.J. and Liu, S.Q. (2004) Detection of P. Aeruginosa Using Nano-Structured Electrode-Separated Piezoelectric DNA Biosensor. Talanta, 62, 271-277.

[74]   Liu, T., Tang, J., Zhao, H.Q., Deng, Y.P. and Jiang, L. (2002) Particle Size Effect of the DNA Sensor Amplified with Gold Nanoparticles. Langmuir, 18, 5624-5626.

[75]   Liu, S.F., Li, J.R. and Jiang, L. (2005) Surface Modification of Platinum Quartz Crystal Microbalance by Controlled Electroless Deposition of Gold Nanoparticles and Its Enhancing Effect on the HS-DNA Immobilization. Colloids and Surfaces A, 257-258, 57-62.

[76]   Zhang, R.Y., Pang, D.W., Zhang, Z.L., Yan, J.W., Yao, J.L., Tian, Z.Q., Mao, B.W. and Sun, S.G. (2002) Investigation of Ordered ds-DNA Monolayers on Gold Electrodes. Journal of Physical Chemistry B, 106, 11233-11239.

[77]   Mo, Z.H., Wang, H.L., Liang, Y.L., Liu, F.W. and Xue, Y.X. (2005) Highly Reproducible Hybridization Assay of Zeptomole DNA Based on Adsorption of Nanoparticle-Bioconjugate. Analyst, 130, 1589-1594.

[78]   Ma, Z.F., Li, J.R., Jiang, L., Yang, M.S. and Sui, S.F. (2002) High Sensitive DNA Detection Amplified by Enlarging Au-Nanoparticles in Situ. Chemistry Letters, 31, 328-329.

[79]   Mao, X., Yang, L., Su, X.L. and Li, Y.B. (2006) A Nanoparticle Amplification Based Quartz Crystal Microbalance DNA Sensor for Detection of Escherichia coli O157:H7. Biosensors and Bioelectronics, 21, 1178-1185.

[80]   Hao, R.Z., Song, H.B., Zuo, G.M., Yang, R.F., Wei, H.P., Wang, D.B., Cui, Z.Q., Zhang, Z., Cheng, Z.X. and Zhang, X.E. (2011) DNA Probe Functionalized QCM Biosensor Based on Gold Nanoparticle Amplification for Bacillus anthracis Detection. Biosensors and Bioelectronics, 26, 3398-3404.

[81]   Willner, I., Patolsky, F., Weizmann, Y. and Willner, B. (2002) Amplified Detection of Single-Base Mismatches in DNA Using Microgravimetric Quartz-Crystal-Microbalance Transduction. Talanta, 56, 847-856.

[82]   Chen, S.H., Chuang, Y.C., Lu, Y.C., Lin, H.C., Yang, Y.L. and Lin, C.S. (2009) A Method of Layer-by-Layer Gold Nanoparticle Hybridization in a Quartz Crystal Microbalance DNA Sensing System Used to Detect Dengue Virus. Nanotechnology, 20, Article ID: 215501.

[83]   Scodeller, P., Flexer, V., Szamocki, R., Calvo, E.J., Tognalli, N., Troiani, H. and Fainstein, A. (2008) Wired-Enzyme Core-Shell Au Nanoparticle Biosensor. Journal of the American Chemical Society, 130, 12690-12697.

[84]   Reimhult, K., Yoshimatsu, K., Risveden, K., Chen, S., Ye, L. and Krozer, A. (2008) Characterization of QCM Sensor Surfaces Coated with Molecularly Imprinted Nanoparticles. Biosensors and Bioelectronics, 23, 1908-1914.

[85]   Kong, L.J., Pan, M.F., Fang, G.Z., He, X.L., Yang, Y.K., Dai, J. and Wang, S. (2014) Molecularly Imprinted Quartz Crystal Microbalance Sensor Based on Poly(o-Aminothiophenol) Membrane and Au Nanoparticles for Ractopamine Determination. Biosensors and Bioelectronics, 51, 286-292.

[86]   Uludag, Y. and Tothill, I.E. (2010) Development of a Sensitive Detection Method of Cancer Biomarkers in Human Serum (75%) Using a Quartz Crystal Microbalance Sensor and Nanoparticles Amplification System. Talanta, 82, 277-282.

[87]   Ma, Z.F., Wu, J.L., Zhou, T.H., Chen, Z.H., Dong, Y., Tang, J.T. and Sui, S.F. (2002) Detection of Human Lung Carcinoma Cell Using Quartz Crystal Microbalance Amplified by Enlarging Au Nanoparticles in Vitro. New Journal of Chemistry, 26, 1795-1798.

[88]   Chen, Q., Tang, W., Wang, D., Wu, X., Li, N. and Liu, F. (2010) Amplified QCM-D Biosensor for Protein Based on Aptamer-Functionalized Gold Nanoparticles. Biosensors and Bioelectronics, 26, 575-579. http://dx.doi.org/10.1016/j.bios.2010.07.034

[89]   Shan, W.Q., Pan, Y.L., Fang, H.T., Guo, M.L., Nie, Z., Huang, Y. and Yao, S.Z. (2014) An Aptamer-Based Quartz Crystal Microbalance Biosensor for Sensitive and Selective Detection of Leukemia Cells Using Silver-Enhanced Gold Nanoparticle Label. Talanta, 126, 130-135.

[90]   Kaufman, E.D., Belyea, J., Johnson, M.C., Nicholson, Z.M., Ricks, J.L., Pavak, K., Shah, P.K., Bayless, M., Pettersson, T., Feldoto, Z., Blomberg, E., Claesson, P. and Franzen, S. (2007) Probing Protein Adsorption onto Mercaptoundecanoic Acid Stabilized Gold Nanoparticles and Surfaces by Quartz Crystal Microbalance and Potential Measurements. Langmuir, 23, 6053-6062.

[91]   Tang, D.Q., Zhang, D.J., Tang, D.Y. and Ai, H. (2006) Amplification of the Antigen-Antibody Interaction from Quartz Crystal Microbalance Immunosensors via Back-Filling Immobilization of Nanogold on Biorecognition Surface. Journal of Immunological Methods, 316, 144-152.

[92]   Su, P.G. and Chang, Y.P. (2008) Low-Humidity Sensor Based on a Quartz-Crystal Microbalance Coated with Poly- pyrrole/Ag/TiO2 Nanoparticles Composite Thin Films. Sensors and Actuators B, 129, 915-920.

[93]   Yang, Y.J., Jiang, Y.D., Xu, J.H. and Yu, J.S. (2007) Conducting Polymeric Nanoparticles Synthesized in Reverse Micelles and Their Gas Sensitivity Based on Quartz Crystal Microbalance. Polymer, 48, 4459-4465.

[94]   Salam, F., Uludag, Y. and Tothill, I.E. (2013) Real-Time and Sensitive Detection of Salmonella Typhimurium Using an Automated Quartz Crystal Microbalance (QCM) Instrument with Nanoparticles Amplification. Talanta, 115, 761- 767.

[95]   Guo, X., Lin, C.S., Chen, S.H., Ye, R. and Wu, V.C.H. (2012) A Piezoelectric Immunosensor for Specific Capture and Enrichment of Viable Pathogens by Quartz Crystal Microbalance Sensor, Followed by Detection with Antibody-Functionalized Gold Nanoparticles. Biosensors and Bioelectronics, 38, 177-183.

[96]   www.q-sense.com/file/qcm-d-and-nanoparticles-application-overview.pdf

[97]   Crooks, R.M. and Ricco, A.J. (1998) New Organic Materials Suitable for Use in Chemical Sensor Arrays. Accounts of Chemical Research, 31, 219-227.

[98]   Ricco, A.J., Crooks, R.M. and Osbourn, G.C. (1998) Surface Acoustic Wave Chemical Sensor Arrays: New Chemically Sensitive Interfaces Combined with Novel Cluster Analysis to Detect Volatile Organic Compounds and Mixtures. Accounts of Chemical Research, 31, 289-296.

[99]   Kepley, L.J., Crooks, R.M. and Ricco, A.J. (1992) A Selective SAW-Based Organophosphonate Chemical Sensor Employing a Self-Assembled, Composite Monolayer: A New Paradigm for Sensor Design. Analytical Chemistry, 64, 3191-3193.

[100]   Schonherr, H., Vancso, G.J., Huisman, B.H., Van Veggel, F.C.J.M. and Reinhoudt, D.N. (1997) An Atomic Force Microscopy Study of Self-Assembled Monolayers of Calix[4]resorcinarene Adsorbates on Au(111). Langmuir, 13, 1567-1570.

[101]   Chen, S., Pei, R., Zhao, T. and Dyer, D.J. (2002) Gold Nanoparticle Assemblies by Metal Ion-Pyridine Complexation and Their Rectified Quantized Charging in Aqueous Solutions. Journal of Physical Chemistry B, 106, 1903-1908.

[102]   Shen, G., Wang, H., Shen, G. and Yu, R.Q. (2007) Au Nanoparticle Network-Type Thin Films Formed via Mixed Assembling and Cross-Linking Route for Biosensor Application: Quartz Crystal Microbalance Study. Analytical Biochemistry, 365, 1-6.

[103]   Liu, H. and Hu, N.F. (2006) Interaction between Myoglobin and Hyaluronic Acid in Their Layer-by-Layer Assembly:Quartz Crystal Microbalance and Cyclic Voltammetry Studies. Journal of Physical Chemistry B, 110, 14494-14502.

[104]   Guleryuz, H., Kaus, I., Buron, C.C., Filiatre, C., Hedin, N., Bergstrom, L. and Einarsrud, M.A. (2014) Deposition of Silica Nanoparticles onto Alumina Measured by Optical Reflectometry and Quartz Crystal Microbalance with Dissipation Techniques. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 384-390.