ABC  Vol.4 No.4 , June 2014
IL-10 Inhibits LPS-Induced Expression of miR-147 in Murine Macrophages
Abstract: Interleukin-10 (IL-10) mediates an anti-inflammatory response that constrains immune responses and limits inflammation-associated pathology. IL-10 does so, in part, by selectively inhibiting pro-inflammatory cytokine and chemokine expression induced in macrophages in response to Toll-like receptor (TLR) signaling. The IL-10-mediated anti-inflammatory response is executed through the activation of STAT3 leading to induction of target genes referred to as IL-10-induced genes. As miRNAs have emerged as important negative regulators of gene expression in various systems, we sought to address whether the IL-10-mediated anti-inflammatory response acts through regulated expression of miRNA genes. Using quantitative PCR-based arrays, we examined 140 miRNA genes with putative roles in inflammation for changes in expression in response to IL-10 and lipopoly-saccharide (LPS) in primary mouse macrophages. IL-10 stimulation resulted in the inhibition of miR-147 expression induced in response to LPS, while having a potentiating effect on the induction of miR-455. miR-147 is the second TLR-induced miRNA, in addition to miR-155, identified to be counter-regulated by IL-10. Its suppression by IL-10 suggests that miR-147 may have an unknown pro-inflammatory function in TLR-triggered macrophages. The results extend the notion that IL-10 selectively regulates expression of miRNA genes, and that miRNA-mediated pathways are a component of the IL-10-mediated anti-inflammatory response.
Cite this paper: Cardwell, L. and Weaver, B. (2014) IL-10 Inhibits LPS-Induced Expression of miR-147 in Murine Macrophages. Advances in Biological Chemistry, 4, 261-273. doi: 10.4236/abc.2014.44032.

[1]   Broz, P. and Monack, D.M. (2013) Newly Described Pattern Recognition Receptors Team up against Intracellular Pathogens. Nature Reviews Immunology, 13, 551-565.

[2]   Medzhitov, R. (2008) Origin and Physiological Roles of Inflammation. Nature, 454, 428-435.

[3]   Takeuchi, O. and Akira, S. (2010) Pattern Recognition Receptors and Inflammation. Cell, 140, 805-820.

[4]   O’Neill, L.A. and Bowie, A.G. (2007) The Family of Five: TIR-Domain-Containing Adaptors in Toll-Like Receptor Signalling. Nature Reviews Immunology, 7, 353-364.

[5]   Takeda, K. and Akira, S. (2005) Toll-Like Receptors in Innate Immunity. International Immunology, 17, 1-14.

[6]   Yamamoto, M. and Akira, S. (2005) TIR Domain-Containing Adaptors Regulate TLR Signaling Pathways. Advances in Experimental Medicine and Biology, 560, 1-9.

[7]   Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B. and Beutler, B. (1998) Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene. Science, 282, 2085-2088.

[8]   Rock, F.L., Hardiman, G., Timans, J.C., Kastelein, R.A. and Bazan, J.F. (1998) A Family of Human Receptors Structurally Related to Drosophila Toll. Proceedings of the National Academy of Sciences of the United States of America, 95, 588-593.

[9]   Kondo, T., Kawai, T. and Akira, S. (2012) Dissecting Negative Regulation of Toll-Like Receptor Signaling. Trends in Immunology, 33, 449-458.

[10]   Murray, P. J. and Smale, S.T. (2012) Restraint of Inflammatory Signaling by Interdependent Strata of Negative Regulatory Pathways. Nature Immunology, 13, 916-924.

[11]   Moore, K. W., de Waal Malefyt, R., Coffman, R. L., and O’Garra, A. (2001) Interleukin-10 and the interleukin-10 receptor, Annual Review of Immunology, 19, 683-765.

[12]   Pestka, S., Krause, C.D., Sarkar, D., Walter, M.R., Shi, Y. and Fisher, P.B. (2004) Interleukin-10 and Related Cytokines and Receptors. Annual Review of Immunology, 22, 929-979.

[13]   Sabat, R., Grutz, G., Warszawska, K., Kirsch, S., Witte, E., Wolk, K. and Geginat, J. (2010) Biology of Interleukin-10. Cytokine & Growth Factor Reviews, 21, 331-344.

[14]   Donnelly, R.P., Dickensheets, H. and Finbloom, D.S. (1999) The Interleukin-10 Signal Transduction Pathway and Regulation of Gene Expression in Mononuclear Phagocytes. Journal of Interferon & Cytokine Research, 19, 563-573.

[15]   Weber-Nordt, R.M., Riley, J.K., Greenlund, A.C., Moore, K.W., Darnell, J.E. and Schreiber, R.D. (1996) Stat3 Recruitment by Two Distinct Ligand-Induced, Tyrosine-Phosphorylated Docking Sites in the Interleukin-10 Receptor Intracellular Domain. Journal of Biological Chemistry, 271, 27954-27961.

[16]   Grutz, G. (2005) New Insights into the Molecular Mechanism of Interleukin-10-Mediated Immunosuppression. Journal of Leukocyte Biology, 77, 3-15.

[17]   Hutchins, A.P., Diez, D. and Miranda-Saavedra, D. (2013) The IL-10/STAT3-Mediated Anti-Inflammatory Response: Recent Developments and Future Challenges. Briefings in Functional Genomics, 12, 489-498.

[18]   Murray, P.J. (2006) Understanding and Exploiting the Endogenous Interleukin-10/STAT3-Mediated Anti-Inflammatory Response. Current Opinion in Pharmacology, 6, 379-386.

[19]   Kühn, R., Löhler, J., Rennick, D., Rajewsky, K. and Müller, W. (1993) Interleukin-10-Deficient Mice Develop Chronic Enterocolitis. Cell, 75, 263-274.

[20]   Spencer, S.D., Di Marco, F., Hooley, J., Pitts-Meek, S., Bauer, M., Ryan, A.M., Sordat, B., Gibbs, V.C. and Aguet, M. (1998) The Orphan Receptor CRF2-4 Is an Essential Subunit of the Interleukin 10 Receptor. Journal of Experimental Medicine, 187, 571-578.

[21]   Takeda, K., Clausen, B.E., Kaisho, T., Tsujimura, T., Terada, N., Forster, I. and Akira, S. (1999) Enhanced Th1 Activity and Development of Chronic Enterocolitis in Mice Devoid of Stat3 in Macrophages and Neutrophils. Immunity, 10, 39-49.

[22]   Asadullah, K., Sabat, R., Friedrich, M., Volk, H.D. and Sterry, W. (2004) Interleukin-10: An Important Immunoregulatory Cytokine with Major Impact on Psoriasis. Current Drug Targets-Inflammation & Allergy, 3, 185-192.

[23]   Correa, I., Veny, M., Esteller, M., Pique, J.M., Yague, J., Panes, J. and Salas, A. (2009) Defective IL-10 Production in Severe Phenotypes of Crohn’s Disease. Journal of Leukocyte Biology, 85, 896-903.

[24]   Glocker, E.O., Kotlarz, D., Klein, C., Shah, N. and Grimbacher, B. (2011) IL-10 and IL-10 Receptor Defects in Humans. Annals of the New York Academy of Sciences, 1246, 102-107.

[25]   Louis, E., Libioulle, C., Reenaers, C., Belaiche, J. and Georges, M. (2009) Genetics of Ulcerative Colitis: The Come-Back of Interleukin 10. Gut, 58, 1173-1176.

[26]   Shah, N., Kammermeier, J., Elawad, M. and Glocker, E.O. (2012) Interleukin-10 and Interleukin-10-Receptor Defects in Inflammatory Bowel Disease. Current Allergy & Asthma Reports, 12, 373-379.

[27]   Pils, M.C., Pisano, F., Fasnacht, N., Heinrich, J.M., Groebe, L., Schippers, A., Rozell, B., Jack, R.S. and Müller, W. (2010) Monocytes/Macrophages and/or Neutrophils Are the Target of IL-10 in the LPS Endotoxemia Model. European Journal of Immunology, 40, 443-448.

[28]   Welte, T., Zhang, S.S., Wang, T., Zhang, Z., Hesslein, D.G., Yin, Z., Kano, A., Iwamoto, Y., Li, E., Craft, J.E., Bothwell, A.L., Fikrig, E., Koni, P.A., Flavell, R.A. and Fu, X.Y. (2003) STAT3 Deletion during Hematopoiesis Causes Crohn’s Disease-Like Pathogenesis and Lethality: A Critical Role of STAT3 in Innate Immunity. Proceedings of the National Academy of Sciences of the United States of America, 100, 1879-1884.

[29]   Biswas, R., Datta, S., Gupta, J.D., Novotny, M., Tebo, J. and Hamilton, T.A. (2003) Regulation of Chemokine mRNA Stability by Lipopolysaccharide and IL-10. The Journal of Immunology, 170, 6202-6208.

[30]   Kim, H.S., Armstrong, D., Hamilton, T.A. and Tebo, J.M. (1998) IL-10 Suppresses LPS-Induced KC mRNA Expression via a Translation-Dependent Decrease in mRNA Stability. Journal of Leukocyte Biology, 64, 33-39.

[31]   Kontoyiannis, D., Kotlyarov, A., Carballo, E., Alexopoulou, L., Blackshear, P.J., Gaestel, M., Davis, R., Flavell, R. and Kollias, G. (2001) Interleukin-10 Targets p38 MAPK to Modulate ARE-Dependent TNF mRNA Translation and Limit Intestinal Pathology. EMBO Journal, 20, 3760-3770.

[32]   Murray, P.J. (2005) The Primary Mechanism of the IL-10-Regulated Antiinflammatory Response Is to Selectively Inhibit Transcription. Proceedings of the National Academy of Sciences of the United States of America, 102, 8686-8691.

[33]   Smallie, T., Ricchetti, G., Horwood, N.J., Feldmann, M., Clark, A.R. and Williams, L.M. (2010) IL-10 Inhibits Transcription Elongation of the Human TNF Gene in Primary Macrophages. Journal of Experimental Medicine, 207, 2081-2088.

[34]   Antoniv, T.T., Park-Min, K.H. and Ivashkiv, L.B. (2005) Kinetics of IL-10-Induced Gene Expression in Human Macrophages. Immunobiology, 210, 87-95.

[35]   Jung, M., Sabat, R., Krätzschmar, J., Seidel, H., Wolk, K., Schönbein, C., Schutt, S., Friedrich, M., Docke, W.D., Asadullah, K., Volk, H.D. and Grütz, G. (2004) Expression Profiling of IL-10-Regulated Genes in Human Monocytes and Peripheral Blood Mononuclear Cells from Psoriatic Patients during IL-10 Therapy. European Journal of Immunology, 34, 481-493.

[36]   Lang, R., Patel, D., Morris, J.J., Rutschman, R.L. and Murray, P.J. (2002) Shaping Gene Expression in Activated and Resting Primary Macrophages by IL-10. The Journal of Immunology, 169, 2253-2263.

[37]   Perrier, P., Martinez, F.O., Locati, M., Bianchi, G., Nebuloni, M., Vago, G., Bazzoni, F., Sozzani, S., Allavena, P. and Mantovani, A. (2004) Distinct Transcriptional Programs Activated by Interleukin-10 with or without Lipopolysaccharide in Dendritic Cells: Induction of the B Cell-Activating Chemokine, CXC Chemokine Ligand 13. The Journal of Immunology, 172, 7031-7042.

[38]   Weaver, B.K., Bohn, E., Judd, B.A., Gil, M.P. and Schreiber, R.D. (2007) ABIN-3: A Molecular Basis for Species Divergence in Interleukin-10-Induced Anti-Inflammatory Actions. Molecular and Cellular Biology, 27, 4603-4616.

[39]   Williams, L., Jarai, G., Smith, A. and Finan, P. (2002) IL-10 Ex-pression Profiling in Human Monocytes. Journal of Leukocyte Biology, 72, 800-809.

[40]   Bushati, N. and Cohen, S.M. (2007) MicroRNA Functions. Annual Review of Cell and Developmental Biology, 23, 175-205.

[41]   Xiao, C. and Rajewsky, K. (2009) MicroRNA Control in the Immune System: Basic Principles. Cell, 136, 26-36.

[42]   O’Connell, R.M., Rao, D.S., Chaudhuri, A.A. and Baltimore, D. (2010) Physiological and Pathological Roles for MicroRNAs in the Immune System. Nature Reviews Immunology, 10, 111-122.

[43]   O’Connell, R.M., Rao, D.S. and Baltimore, D. (2012) MicroRNA Regulation of Inflammatory Responses. Annual Review of Immunology, 30, 295-312.

[44]   Lagos-Quintana, M., Rauhut, R., Lendeckel, W. and Tuschl, T. (2001) Identification of Novel Genes Coding for Small Expressed RNAs. Science, 294, 853-858.

[45]   Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J., Di Padova, F., Lin, S.C., Gram, H. and Han, J. (2005) Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability. Cell, 120, 623-634.

[46]   Baek, D., Villén, J., Shin, C., Camargo, F.D., Gygi, S.P. and Bartel, D.P. (2008) The Impact of MicroRNAs on Protein Output. Nature, 455, 64-71.

[47]   Selbach, M., Schwänhausser, B., Thierfelder, N., Fang, Z., Khanin, R. and Rajewsky, N. (2008) Widespread Changes in Protein Synthesis Induced by MicroRNAs. Nature, 455, 58-63.

[48]   Guo, H., Ingolia, N.T., Weissman, J.S. and Bartel, D.P. (2010) Mammalian MicroRNAs Predominantly Act to Decrease Target mRNA Levels. Nature, 466, 835-840.

[49]   Valencia-Sanchez, M.A., Liu, J., Hannon, G.J. and Parker, R. (2006) Control of Translation and mRNA Degradation by miRNAs and siRNAs. Genes & Development, 20, 515-524.

[50]   Huntzinger, E. and Izaurralde, E. (2011) Gene Silencing by MicroRNAs: Contributions of Translational Repression and mRNA Decay. Nature Reviews Genetics, 12, 99-110.

[51]   McCoy, C.E. (2011) The Role of miRNAs in Cytokine Signaling. Frontiers in Bioscience, 16, 2161-2171.

[52]   O’Neill, L.A., Sheedy, F.J. and McCoy, C.E. (2011) MicroRNAs: The Fine-Tuners of Toll-Like Receptor Signaling. Nature Reviews Immunology, 11, 163-175.

[53]   Kohanbash, G. and Okada, H. (2012) MicroRNAs and STAT Interplay. Seminars in Cancer Biology, 22, 70-75.

[54]   Li, Y. and Shi, X. (2013) MicroRNAs in the Regulation of TLR and RIG-I Pathways. Cellular & Molecular Immunology, 10, 65-71.

[55]   McCoy, C.E., Sheedy, F.J., Qualls, J.E., Doyle, S.L., Quinn, S.R., Murray, P.J. and O’Neill, L.A. (2010) IL-10 Inhibits miR-155 Induction by Toll-Like Receptors. The Journal of Biological Chemistry, 285, 20492-20498.

[56]   O’Connell, R.M., Kahn, D., Gibson, W.S., Round, J.L., Scholz, R.L., Chaudhuri, A.A., Kahn, M.E., Rao, D.S. and Baltimore, D. (2010) MicroRNA-155 Promotes Autoimmune Inflammation by Enhancing Inflammatory T Cell Development. Immunity, 33, 607-619.

[57]   Blüml, S., Bonelli, M., Niederreiter, B., Puchner, A., Mayr, G., Hayer, S., Koenders, M.I., van den Berg, W.B., Smolen, J. and Redlich, K. (2011) Essential Role of MicroRNA-155 in the Pathogenesis of Autoimmune Arthritis in Mice. Arthritis & Rheumatology, 63, 1281-1288.

[58]   Liu, G. and Abraham, E. (2013) ATVB in Focus: MicroRNAs: From Basic Mechanisms to Clinical Application in Cardiovascular Medicine. MicroRNAs in Immune Response and Macrophage Polarization. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 170-177.

[59]   Celada, A., Gray, P.W., Rinderknecht, E. and Schreiber, R.D. (1984) Evidence for a Gamma-Interferon Receptor That Regulates Macrophage Tumoricidal Activity. Journal of Experimental Medicine, 160, 55-74.

[60]   Kuwata, H., Watanabe, Y., Miyoshi, H., Yamamoto, M., Kaisho, T., Takeda, K. and Akira, S. (2003) IL-10-Inducible Bcl-3 Negatively Regulates LPS-Induced TNF-Alpha Production in Macrophages. Blood, 102, 4123-4129.

[61]   Wullaert, A., Verstrepen, L., Van Huffel, S., Adib-Conquy, M., Cornelis, S., Kreike, M., Haegman, M., El Bakkouri, K., Sanders, M., Verhelst, K., Carpentier, I., Cavaillon, J.M., Heyninck, K. and Beyaert, R. (2007) LIND/ABIN-3 Is a Novel Lipopolysaccharide-Inducible Inhibitor of NF-kappaB Activation. The Journal of Biological Chemistry, 282, 81-90.

[62]   Monk, C.E., Hutvagner, G. and Arthur, J.S. (2010) Regulation of miRNA Transcription in Macrophages in Response to Candida albicans. PLoS ONE, 5, e13669.

[63]   O’Connell, R.M., Taganov, K.D., Boldin, M.P., Cheng, G. and Baltimore, D. (2007) MicroRNA-155 Is Induced during the Macrophage Inflammatory Response. Proceedings of the National Academy of Sciences of the United States of America, 104, 1604-1609.

[64]   Curtale, G., Mirolo, M., Renzi, T.A., Rossato, M., Bazzoni, F. and Locati, M. (2013) Negative Regulation of Toll-Like Receptor 4 Signaling by IL-10-Dependent MicroRNA-146b. Proceedings of the National Academy of Sciences of the United States of America, 110, 11499-11504.

[65]   Liu, G., Friggeri, A., Yang, Y., Park, Y.J., Tsuruta, Y. and Abraham, E. (2009) MiR-147, a MicroRNA That Is Induced upon Toll-Like Receptor Stimulation, Regulates Murine Macrophage Inflammatory Responses. Proceedings of the National Academy of Sciences of the United States of America, 106, 15819-15824.

[66]   Rossato, M., Curtale, G., Tamassia, N., Castellucci, M., Mori, L., Gasperini, S., Mariotti, B., De Luca, M., Mirolo, M., Cassatella, M.A., Locati, M. and Bazzoni, F. (2012) IL-10-Induced MicroRNA-187 Negatively Regulates TNF-Alpha, IL-6, and IL-12p40 Production in TLR4-Stimulated Monocytes. Proceedings of the National Academy of Sciences of the United States of America, 109, E3101-3110.

[67]   Vigorito, E., Kohlhaas, S., Lu, D. and Leyland, R. (2013) MiR-155: An Ancient Regulator of the Immune System. Immunological Reviews, 253, 146-157.

[68]   Cheung, S.T., So, E.Y., Chang, D., Ming-Lum, A. and Mui, A.L. (2013) Interleukin-10 Inhibits Lipopolysaccharide Induced MiR-155 Precursor Stability and Maturation. PLoS ONE, 8, e71336.

[69]   Quinn, S.R. and O’Neill, L.A. (2011) A Trio of MicroRNAs That Control Toll-Like Receptor Signaling. International Immunology, 23, 421-425.

[70]   Zhou, J., Wang, H., Lu, A., Hu, G., Luo, A., Ding, F., Zhang, J., Wang, X., Wu, M. and Liu, Z. (2002) A Novel Gene, NMES1, Downregulated in Human Esophageal Squamous Cell Carcinoma. International Journal of Cancer, 101, 311-316.

[71]   Zimmer, A., Bouley, J., Le Mignon, M., Pliquet, E., Horiot, S., Turfkruyer, M., Baron-Bodo, V., Horak, F., Nony, E., Louise, A., Moussu, H., Mascarell, L. and Moingeon, P. (2012) A Regulatory Dendritic Cell Signature Correlates with the Clinical Efficacy of Allergen-Specific Sublingual Immuno-therapy. Journal of Allergy and Clinical Immunology, 129, 1020-1030.

[72]   Yao, Y., Suo, A.L., Li, Z.F., Liu, L.Y., Tian, T., Ni, L., Zhang, W.G., Nan, K.J., Song, T.S. and Huang, C. (2009) MicroRNA Profiling of Human Gastric Cancer. Molecular Medicine Reports, 2, 963-970.

[73]   Uhlmann, S., Mannsperger, H., Zhang, J.D., Horvat, E.A., Schmidt, C., Kublbeck, M., Henjes, F., Ward, A., Tschulena, U., Zweig, K., Korf, U., Wiemann, S. and Sahin, O. (2012) Global MicroRNA Level Regulation of EGFR-Driven Cell-Cycle Protein Network in Breast Cancer. Molecular Systems Biology, 8, 570.

[74]   Lee, C.G., McCarthy, S., Gruidl, M., Timme, C. and Yeatman, T.J. (2014) MicroRNA-147 Induces a Mesenchymal-to-Epithelial Transition (MET) and Reverses EGFR Inhibitor Resistance. PLoS ONE, 9, e84597.

[75]   Klein, B., Lu, Z.Y., Gu, Z.J., Costes, V., Jourdan, M., and Rossi, J.F. (1999) Interleukin-10 and Gp130 Cytokines in Human Multiple Myeloma. Leukemia & Lymphoma, 34, 63-70.

[76]   Quinn, S.R., Mangan, N.E., Caffrey, B.E., Gantier, M.P., Williams, B.R., Hertzog, P.J., McCoy, C.E. and O’Neill, L.A. (2013) The Role of Ets2 Transcription Factor in the Induction of MicroRNA-155 by LPS, and Its Targeting by IL-10. Journal of Biological Chemistry, 289, 4316-4325.

[77]   Kishore, R., Tebo, J.M., Kolosov, M. and Hamilton, T.A. (1999) Cutting Edge: Clustered AU-Rich Elements Are the Target of IL-10-Mediated mRNA Destabilization in Mouse Macrophages. Journal of Immunology, 162, 2457-2461.