JMP  Vol.2 No.4 , April 2011
Schwarzschild Geodesics in Terms of Elliptic Functions and the Related Red Shift
Author(s) Gunter Scharf
ABSTRACT
Using Weierstrassian elliptic functions the exact geodesics in the Schwarzschild metric are expressed in a simple and most transparent form. The results are useful for analytical and numerical applications. For example we calculate the perihelion precession and the light deflection in the post-Einsteinian approximation. The bounded orbits are computed in the post-Newtonian order. As a topical application we calculate the gravitational red shift for a star moving in the Schwarzschild field.

Cite this paper
nullG. Scharf, "Schwarzschild Geodesics in Terms of Elliptic Functions and the Related Red Shift," Journal of Modern Physics, Vol. 2 No. 4, 2011, pp. 274-283. doi: 10.4236/jmp.2011.24036.
References
[1]   D. J. D’Orazio and P. Saha, “An Analytic Solution for Weak-field Schwarzschild Geodesics,” Monthly Notices of the Royal Astronomical Society, Vol. 406, pp. 2787-2792.

[2]   M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions,” Dover Publications, Inc., New York.

[3]   G. Scharf and Gen. Relativ. Gravit, “From Massive Gravity to Modified General Relativity,” General Relativity and Gravitation, Vol. 42, pp. 471-487. doi: 10.1007/s10714-009-0864-0

[4]   S. Chandrasekhar, “The Mathematical Theory of Black Holes,” Oxford/New York, Clarendon Press/Oxford University Press, 1983.

[5]   E. T. Whittaker and G. N. Watson, “A Course of Modern Analysis,” Cambridge University Press, 1950.

[6]   A. Erdelyi et al., “Higher Transcendental Functions,” McGraw-Hill Book Co., Inc., New York, 1953.

[7]   J. Tannery, J. Molk, “Fonctions elliptiques,” Chelsea Publishing Company, Bronx, New York , 1972.

[8]   Ch. Darwin, Proc. Roy. S. London A 249 (1959) 180, A 263 (1961) 39.

[9]   S. Weinberg, “Gravitation and Cosmology,” John Wiley, New York, 1972.

[10]   G. Scharf, “Quantum Gauge Theories-Spin One and Two,” Google-Books (2010) free access.

[11]   Y. Hagihara, Japanese J. Astron. Geophys. 8 (1930) 68.

 
 
Top