[1] Benjamin Ribba et al. (2006) A Multiscale Mathematical Model of Avascular Tumor Growth to Investigate the Therapeutic Benefit of Anti-Invasive Agents. Elsevier Science, Preprint.
[2] Pamuk, S. (2007) A Mathematical Model for Tumor Angiogenesis. University of Idaho, Moscow, Idaho.
[3] Anderson, A. and Chaplain, M. (1998) Continuous and Discrete Mathematical Models of Tumor-Induced Angiogenesis. Bulletin of Mathematical Biology, 60, 857-899. http://dx.doi.org/10.1006/bulm.1998.0042
[4] Levine, H., Tucker, A. and Nilsen-Hamilton, M. (2002) A Mathematical Model for the Role of Cell Signal Transduction in the Initiation and Inhibition of Angiogenesis. Growth Factors, 20, 155-175.
http://dx.doi.org/10.1080/0897719031000084355
[5] Good, D., Polverini, P., Rastinejad, F., Le Beau, M., Lemons, R., Frazier, W. and Bouck, N. (1990) A Tumor Suppressor-Dependent Inhibitor of Angiogenesis Is Immunologically and Functionally Indistinguishable from a Fragment of Thrombospondin. Proceedings of the National Academy of Sciences, 87, 6624-6628.
http://dx.doi.org/10.1073/pnas.87.17.6624
[6] Bickel, S.T., Juliano, J.D. and Nagy, J.D. (2014) Evolution of Proliferation and the Angiogenic Switch in Tumors with High Clonal Diversity. PLoS ONE, 9, Article ID: e91992.
[7] Folkman, J. (1971) Fundamental Concept of the Angiogenic Process. The New England Journal of Medicine, 285, 1182-1186.
[8] Harrington, H.A., Maier, M., Naidoo, L., Whitaker, N. and Kevrekidis, P.G. (2006) A Hybrid Model for Tumor-Induced Angiogenesis in the Cornea in the Presence of Inhibitors. Mathematical and Computer Modelling, 46, 513-524.
http://dx.doi.org/10.1016/j.mcm.2006.11.034
[9] Tong, S. and Yuan, F. (2001) Numerical Simualtion of Angiogeneis in the Cornea. Microvascular Research, 61, 14-27.
[10] Abdulle, A. (2002) Fourth Order Chebyshev Methods with Recurrence Relation. SIAM Journal on Scientific Computing, 23, 2041-2054. http://dx.doi.org/10.1137/S1064827500379549
[11] Van der Houwen, S.B, (1980) On the Internal Stage Runge-Kutta Methods for Large m-Values. Zeitschrift für Angewandte Mathematik und Mechanik, 60, 479-485.
[12] Verwer, J.G. (1996) Explicit Runge-Kutta Methods for Parabolic Differential Equations. Applied Numerical Mathematics, 22, 359-379. http://dx.doi.org/10.1016/S0168-9274(96)00022-0
[13] Sommeijer, B., Shampine, L. and Verwer, J. (1998) RKC: An Explicit Solver for Parabolic PDEs. Journal of Computational and Applied Mathematics, 88, 326.
[14] Riha, W. (1972) Optimal Stability Polynominals. Computing, 9, 37-43.
http://dx.doi.org/10.1007/BF02236374
[15] Abdulle, A. (2011) Explicit Stabilized Runge-Kutta Methods. MATHICSE Technical Report, Nr. 27.2011.
[16] LeVeque, R.J. (2007) Finite Difference Methods for Ordinary and Partial Differential Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 175-179. http://dx.doi.org/10.1007/BF02236374