JMP  Vol.5 No.9 , June 2014
Why E Is Not Equal to mc2
Author(s) M. S. El Naschie*
ABSTRACT

We show that Einstein’s famous formula E = mc2 is actually the sum of two quantum parts, namely E = mc2/22 of the quantum particle and E = mc2 (21/22) of the quantum wave. We use first Magueijo-Smolin’s VSL theory to derive the relevant equation and then validate our results using ’tHooft-Veltman’s dimensional regularization. All in all our result confirms the COBE, WMAP, Planck and super nova cosmic measurements with astonishing precision.


Cite this paper
Naschie, M. (2014) Why E Is Not Equal to mc2. Journal of Modern Physics, 5, 743-750. doi: 10.4236/jmp.2014.59084.
References
[1]   Cox, B. and Forshaw, J. (2010) Why Does E = mc2? Da Capop Press-Perseus Books Group, Philadelphia.

[2]   Helal, M.A., Marek-Crnjac, L. and He, J.-H. (2013) Open Journal of Microphysics, 3, 141-145.
http://dx.doi.org/10.4236/ojm.2013.34020

[3]   Marek-Crnjac, L. (2013) International Journal of Astronomy and Astrophysics, 3, 464-471.
http://dx.doi.org/10.4236/ijaa.2013.34053

[4]   El Naschie, M.S. (2013) Journal of Modern Physics, 4, 591-596.
http://dx.doi.org/10.4236/jmp.2013.45084

[5]   El Naschie, M.S. (2013) Journal of Quantum Information Science, 3, 121-126.
http://dx.doi.org/10.4236/jqis.2013.34016

[6]   Penrose, R. (2004) The Road to Reality. Jonathan Cape, London.

[7]   El Naschie, M.S., Rossler, O.E. and Prigogine, I. (1995) Quantum Mechanics, Diffusion and Chaotic Fractals. Pergamon Press/Elsevier, Oxford.

[8]   Chirardi, G. (2005) Sneaking a Look at God’s Cards. Princeton University Press, Princeton.

[9]   Penrose, R. (1994) Shadows of the Mind. Oxford University Press, Oxford.

[10]   El Naschie, M.S. (2012) Revising Einstein’s E = mc2: A Theoretical Resolution of the Mystery of Dark Energy. The Fourth Arab International Conference in Physics and Materials Science, Alexandria, 1-3 October 2012.

[11]   He, J.-H. (2012) A Historical Scientific Announcement on Dark Energy.
http://works.bepress.com/ji-huan_he/64.mini-symposium

[12]   He, J.-H. (2013) Fractal Space-Time & Non-Commutative Geometry in Quantum & High Energy Physics, 3, 1-2.

[13]   He, J.-H. and Marek-Crnjac, L. (2013) Fractal Space-Time & Non-Commutative Geometry in Quantum & High Energy Physics, 3, 130-137.

[14]   He, J.-H. and El Naschie, M.S. (2013) Fractal Space-Time and Non-Commutative Geometry in High Energy Physics, 3, 59-62.

[15]   El Naschie, M.S. (2013) International Journal of Astronomy and Astrophysics, 3, 483-493.
http://dx.doi.org/10.4236/ijaa.2013.34056

[16]   El Naschie, M.S. (2013) American Journal of Modern Physics, 2, 357-361.
http://dx.doi.org/10.11648/j.ajmp.20130206.23

[17]   Longair, M. (2006) The Cosmic Century: “A History of Astrophyiscs and Cosmology”. Cambridge University Press, Cambridge.

[18]   Ruiz-Lapuente, P. (2010) Dark Energy: Observational and Theoretical Approaches. Cambridge University Press, Cambridge.

[19]   Bahcall, J., Piran, T. and Weinberg, S. (2004) Dark Matter in the Universe. World Scientific, Singapore.

[20]   Amendola, L. and Tsujikawa, S. (2010) Dark Energy. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511750823

[21]   Mortonson, M.J., Weinberg, D.H. and White, M. (2013) Dark Energy. arXiv:1401.0046V1[astro-ph co]

[22]   Dingle, H. (1972) Science at the Crossroads. Martin Brian and O’Keefe, London.

[23]   Ohanian, H.C. (2009) Studies in History and Philosophy of Science Part B, 40, 167-173.
http://dx.doi.org/10.1016/j.shpsb.2009.03.002

[24]   Mc-Crea, W.H. (1967) Nature, 216, 122-124.
http://dx.doi.org/10.1038/216122a0

[25]   Overbye, D. (2002) Roll over Einstein. New York Times, 31 December 2002, 2.

[26]   Dingle, H. (1973) Nature, 244, 567-568.
http://dx.doi.org/10.1038/244567a0

[27]   El Naschie, M.S. (1990) Stress, Stability and Chaos in Structural Engineering: An Energy Approach. McGraw Hill, London, Tokyo.

[28]   Heisenberg, W. (1969) Der Teil und das Ganze. R. Piper Verlag, München. (English Edition (1971) Physics and Beyond. Harper and Row, New York.)

[29]   El Naschie, M.S. (1994) Chaos, Solitons & Fractals, 4, 1141-1145.
http://dx.doi.org/10.1016/0960-0779(94)90027-2

[30]   El Naschie, M.S. (2005) Chaos, Solitons & Fractals, 24, 941-946.
http://dx.doi.org/10.1016/j.chaos.2004.10.001

[31]   Dyson, F. (1988) Infinite in all Directions. Harper & Row, New York.

[32]   El Naschie, M.S. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 43-54.
http://dx.doi.org/10.4236/ijmnta.2013.21005

[33]   Magueijo, J. (2003) Faster than the Speed of Light. Arrow Books, the Random House, London.

[34]   Mageuijo, J. and Smolin, L. (2001) Lorentz Invariance with an Invariant Energy Scale. arXiv:hep-th/0112090V2

[35]   El Naschie, M.S. (2013) Journal of Quantum Information Science, 3, 57-77.
http://dx.doi.org/10.4236/jqis.2013.32011

[36]   Marek-Crnjac, L., El Naschie, M.S. and He, J.H. (2013) International Journal of Modern Nonlinear Theory and Application, 2, 78-88.
http://dx.doi.org/10.4236/ijmnta.2013.21A010

[37]   Wapner, L.M. (2005) The Pea and the Sun. A.K. Peters Ltd., Wellesley.

[38]   ’tHooft, G. (2001) A Confrontation with Infinity. In: Sidharth, B. and Altaisky, M., Eds., Frontiers of Fundamental Physics 4, Kluwer-Plenum, New York, 1-12.

[39]   El Naschie, M.S. (2001) ‘tHooft Dimensional Regularization Implies Transfinite Heterotic String Theory and Dimensional Transmutation. In: Sidharth, B. and Altaisky, M., Eds., Frontiers of Fundamental Physics 4, Kluwer-Plenum, New York, 81-86.
http://dx.doi.org/10.1007/978-1-4615-1339-1_7

[40]   Kaku, M. (1999) Introduction to Superstrings and M-Theory. Springer, New York.
http://dx.doi.org/10.1007/978-1-4612-0543-2

[41]   Mason, P. (2010) Quantum Glory. XP Publishing, Arizona.

 
 
Top