MSA  Vol.5 No.8 , June 2014
Electrochemical Investigation of P-Tert-Butylcalix[6]Arene Modified Gold Electrode for Ionic Detection
The aim of this work was to study the electrochemical behavior of gold electrode which was modified with p-tert-butylcalix[6]arene membrane and this in the presence of different nickel ions based concentrations in order to form a nickel electrochemical sensor. For that, impedance-spec- troscopy characteristics have been investigated. The obtained results were then modeled by appropriate equivalent circuit aiming at elucidating the electrical properties of the modified gold transducer. A correlation between the present impedimetric results and previous potentiometric ones was achieved traducing then a fast ionic transfer.

Cite this paper
Sakly, H. , Ouada, H. and Renault, N. (2014) Electrochemical Investigation of P-Tert-Butylcalix[6]Arene Modified Gold Electrode for Ionic Detection. Materials Sciences and Applications, 5, 496-503. doi: 10.4236/msa.2014.58054.
[1]   Cali, C., Fiox, D., Taillades, G., et al. (2002) Copper (II) Selective Electrode Based on Chalcogenide Materials: Study of the Membrane/Solution Interface with Electrochemical Impedance Spectroscopy and X-Ray Photoelectron Spectroscopy. Materials Science and Engineering C, 21, 3-8.

[2]   Legin, A.V., Bychkov, E.A. and Vlasov, Y.G. (1995) Analytical Applications of Chalcogenide Glass Chemical Sensors in Environmental Monitoring and Process Control. Sensors and Actuators B: Chemical, 24, 309-311.

[3]   Barhoumi, H., Maaref, A., Mlika, R., et al. (2005) EIS Field Effect Structures Functionalized by p-tert-butylcalix[6] arene for Ni2+ detection. Materials Science and Engineering C, 25, 61-66.

[4]   Reymond, F., Fermín, D., Lee, H.J. and Girault, H. (2000) Electrochemistry at Liquid:Liquid Interfaces: Methodology and Potential Applications. Electrochimica Acta, 45, 2647-2662.

[5]   Shoening, M.J. (2005) Playing around with Field-Effect Sensors on the Basis of EIS Structures. LAPS and ISFETs Sensors, 5, 126-138.

[6]   Bard, A.J. and Faulkner, L.R. (2001) Electrochemical Methods. J. Willey & Sons, New York.

[7]   Maupas, H., Saby, C., Martelet, C., et al. (1996) Impedance Analysis of Silicon/Silicon Dioxide Heterostructures Grafted with Antibodies: An Approach for Immunosensor Development. Journal of Electroanalytical Chemistry, 406, 53-58.

[8]   Gutsche, C.D. (1989) Calixarenes. Royal Society of Chemistry, Cambridge.

[9]   Diamond, D. and Nolan, K. (2001) Calixarenes: Designer Ligands for Chemical Sensors. Analytical Chemistry, 73, 22A-29A.

[10]   Ludwing, R. and Thi Kim Dzung, N. (2002) Calixarene-Based Molecules for Cation Recognition. Sensors, 2, 397-416.

[11]   Diamond, D., Svehla, G., Seward, E.M. and McKervey, M.A. (1988) A Sodium Ion-Selective Electrode Based on p-t-butylcalix[4]aryl Acetate as the Ionophore. Analytica Chimica Acta, 204, 223-231.

[12]   Diamond, D. and McKervey, M.A. (1996) Calixarene-Based Sensing Agents. Chemical Society Reviews, 25, 15-24.

[13]   Gradny, T., Cadogan, A., McKittrick, T., et al. (1996) Sodium-Selective Electrodes Based on Triester Monoacid Derivatives of p-tert-butylcalix[4]arene. Comparison with Tetraester calyx[4]arene ionophores. Analytica Chimica Acta. 336, 1.

[14]   Hassanzadeh, P., Yaftian, M.R., Bahari, Z. and Matt, D. (2006) A Coated Graphite Thorium-ion Selective Potentiometric Sensor Based on calix[4]arene Bearing Phosphoryl Groups. Journal of the Chinese Chemical Society, 53, 11131118.

[15]   O’Conner, K.M., Svehla, G., Hauis, S.J. and Mekervey, M.A. (1992) Calixarene-Based Potentiometric Ion-Selective Electrodes for Silver. Talanta, 39, 1549-1554.

[16]   Wilkop, T., Kranse, S., Nabok, A., Ray, A.K. and Yates, R. (2001) The Detection of Organic Polutants in Water with Calixarene Coated Electrodes. Studies in Interface Science, 11, 427-437.

[17]   Kell, D.B., Davery, C.L. (1990) Cass, A.E.G., Ed., Biosensors: A Practical Approach, IRL, Oxford, Chapter 5.

[18]   Mourzina, Y., Mai, Th., Poghossian, A., Ermolenko, Yu., et al. (2003) K+-Selective Field-Effect Sensors as Transducers for Bioelectronic Applications. Electrochimica Acta, 48, 3333-3339.

[19]   Oelgeklaus, R. and Baltruschat, H. (1997) Detection of Hydrocarbons in Air by Adsorption on Pt-Electrodes Using Continuous Impedance Measurements. Sensors and Actuators B, 42, 31-37.

[20]   Guo Guan, J., Qing Miao, Y. and Zhang, Q. (2004) Impedimetric Biosensors. Biosenscience and Bioengineering, 97, 219-226.

[21]   Ben Ali, M., Homri, T., Korpan, Y., Abdelghani, A., Maaref, M.A., Liu, L., Jaffrezic-Renault, N. and Martelet, C. (2006) Electrical Characterization of Functionalized Platinum Electrodes and ISFET Sensors for Metal Ion Detection. Materials Science and Engineering C, 26, 149-153.

[22]   Bezzi, N., Merabet, D., Benabdeslem, N. and Arkoub, H. (2001) Caractérisation Physico-Chimique du Minerai de Phosphate de Bled el Hadba Tebessa). Annales de Chime et Sciences des Matériaux, 26, 5-23.

[23]   Mlika, R., Ben Ouada, H., Ben Chaabane, R., Gamoudi, M., Guillaud, G., Jaffrezic-Renault, N. and Lamartine, R. (1998) Calixarene Membranes on Semiconductor Substrates for E.I.S. Chemical Sensors. Electrochemica Acta, 43, 841-847.

[24]   Ben Ali, M., Bureau, C., Martelet, C., Jaffrezic-Renault, N., Lamartine, R. and Ben Ouada, H. (2000) Comparison of Thiacalix[4]arene Thin Films Behaviour on Different Transducers for Copper Ion Detection. Material Sciences and Engneering C, 7, 83-89.

[25]   Scharff, J.P., Mahjoubi, M. and Perrin, R. (1991) Synthesis and Acid-Base Properties of Calix4, Calix6 and Calix8arene p-Sulfonic Acids. New Journal of Chemistry, 15, 883-887.

[26]   Matveeva, E.S., Diaz Calleja, R. and Parkhutik, V. (1998) Equivalent Circuit Analysis of the Electrical Properties of Conducting Polymers: Electrical Relaxation Mechanisms in Polyaniline under Dry and Wet Conditions. Journal of Non-Crystalline Solids, 235-237, 772-780.

[27]   McAdams, E.T., Lackermier, A., McLaughlin, J.A., Macken, D. and Jossinet, J. (1995) The Linear and Non-Linear Electrical Properties of the Electrode-Electrolyte Interface. Biosensors and Bioelectronics, 10, 67-74.

[28]   Drelich, J., Millerand, J.D. and Good, R.J. (1996) The Effect of Drop (Bubble) Size on Advancing and Receding Contact Angles for Heterogeneous and Rough Solid Surfaces as Observed with Sessile-Drop and Captive-Bubble Techniques. Journal of Colloid and Interface Science, 179, 37-50.

[29]   Marmur, A. (1994) Thermodynamic Aspects of Contact Angle Hysteresis. Advances in Colloids and Interface Science, 50, 121-141.

[30]   Van Der Wal, P.D., Sudholter, E.J.R., Boukamp, B.A., et al. (1991) Impedance Spectroscopy and Surface Study of Potassium-Selective Silicone Rubber Membranes. Journal of Electroanaytical Chemistry, 317, 153-168.

[31]   Boukamp, B.A. (1993) Manual AC-Immittance Data Analysis System Equivalent Circuit, Version 4.5, University of Twente, Twente.

[32]   Armstrong, R.D., Covington, A.K. and Evans, G.P. (1983) Mechanistic Studies of the Valinomycin-Based PotassiumSelective Electrode Using AC Impedance Methods. Journal of Electroanaytical Chemistry, 159, 33-40.

[33]   Antropov (1979) Electrochimie Théorique, Edition Mir, Mouscou.

[34]   Sakly, H., Mlika, R., Chaabane, H., Beji, L. and Ben Ouada, H. (2006) Anodically Oxidized Porous Silicon as a Substrate for EIS Sensors. Materials Science and Engineering C, 26, 232-235.