Lie Symmetries, One-Dimensional Optimal System and Optimal Reduction of (2 + 1)-Coupled nonlinear Schrödinger Equations

Show more

References

[1] Benney, D.J. and Roskes, G.J. (1969) Wave Instabilities. Studies in Applied Mathematics, 48, 377.

[2] Davey, A. and Stewartson, K. (1974) On Three-Dimensional Packets of Surface Waves. Proceedings of the Royal Society of London. Series A, 338, 101-110. http://dx.doi.org/10.1098/rspa.1974.0076

[3] Djordjevic, V.D. and Redekopp, L.G. (1977) On Two-Dimensional Packets of Capillary-Gravity Waves. Journal of Fluid Mechanics, 79, 703-714.

[4] Freeman, C.N. and Davey, A. (1975) On the Soliton Solutions of the Davey-Stewartson Equation for Long Waves. Proceedings of the Royal Society of London. Series A, 344, 427-433.

http://dx.doi.org/10.1098/rspa.1975.0110

[5] Ablowitz, M.J. and Haberman, R. (1975) Nonlinear Evolution Equations?? Two and Three Dimensions. Physical Review Letters, 35, 1185. http://dx.doi.org/10.1103/PhysRevLett.35.1185

[6] Satsuma, J. and Ablowitz, M.J. (1979) Two-Dimensional Lumps in Nonlinear Dispersive Systems. Journal of Mathematical Physics, 20, 1496. http://dx.doi.org/10.1063/1.524208

[7] Ablowitz, M J. and Segur, H. (1979) On the Evolution of Packets of Water Waves. Journal of Fluid Mechanics, 92, 691-715.

[8] Anker, D. and Freeman, N.C. (1978) On the Soliton Solutions of the Davey-Stewartson Equation for Long Waves. Proceedings of the Royal Society of London. Series A, 360, 529-540.

http://dx.doi.org/10.1098/rspa.1978.0083

[9] Nakamura, A. (1982) Explode-Decay Mode Lump Solitons of a Two-Dimensional Nonlinear Schrodinger Equation. Physics Letters A, 88, 55-56. http://dx.doi.org/10.1016/0375-9601(82)90587-4

[10] Nakamura, A. (1982) Simple Multiple Explode-Decay Mode Solutions of a Two-Dimensional Nonlinear Schrodinger Equation. Journal of Mathematical Physics, 23, 417. http://dx.doi.org/10.1063/1.525361

[11] Tajiri, M.J. (1983) Similarity Reductions of the One and Two Dimensional Nonlinear Schrodinger Equations. Journal of the Physical Society of Japan, 52, 1908-1917. http://dx.doi.org/10.1143/JPSJ.52.1908

[12] Tajiri, M. and Hagiwar, M. (1983) Similarity Solutions of the Two-Dimensional Coupled Nonlinear Schrodinger Equation. Journal of the Physical Society of Japan, 52, 3727-3734.

http://dx.doi.org/10.1143/JPSJ.52.3727

[13] Lbragimov, N.H. and Kovalev, V.F. (2009) Approximate and Renormgroup Symmetries. Higher Education Press, Beijing, 1-72.

[14] Bluman, G.W. and Kumei, S. (1991) Symmetries and Differential Equations. In: Applied Mathematical Sciences, Vol. 81, Springer-Verlag/World Publishing Corp, New York, 173-186.

[15] Ovsiannikov, L.V. (1982) Group Analysis of Differential Equations (Translation Edited by Ames, W.F.). Academic Press, New York, 183-209.

[16] Temuer, C.L. and Pang, J. (2010) An Algorithm for the Complete Symmetry Classification of Differential Equations Based on Wu’s Method. Journal of Engineering Mathematics, 66, 181-199.

http://dx.doi.org/10.1007/s10665-009-9344-5

[17] Temuer, C. and Bai, Y.S. (2010) A New Algorithmic Theory for Determining and Classifying Classical and NonClassical Symmetries of Partial Differential Equations (in Chinese). Scientia Sinica Mathematica, 40, 331-348.

[18] Bluman, G.W. and Cole, J. D. (1974) Similarity Method for Differential Equations. Springer, Berlin.

http://dx.doi.org/10.1007/978-1-4612-6394-4

[19] Olver, P.J. (1993) Applications of Lie Groups to Differential Equations. Spring-Verlag. New York/Berlin/Hong Kong.

[20] Bluman, G.W. and Anco, S.C. (2002) Symmetry and Integration Methods for Differential Equation. 2nd Edition, Springer-Verlag, New York.