[1] Spearman, T.N. and Butcher, F.R. (1989) Cellular Regulation of Amylase Secretion by the Parotid Gland. In: Forte, J.G., Ed., Handbook of Physiology, Section 6, The Gastrointestinal System, American Physiological Society, Bethesda, 63-77.
[2] Takuma, T. and Ichida, T. (1994) Catalytic Subunit of Protein Kinase A Induces Amylase Release from Streptolysin O-Permeabilized Parotid Acini. The Journal of Biological Chemistry, 269, 22124-22128.
[3] Kanamori, T., Hayakawa, T., Suzuki, M. and Titani, K. (1995) Identification of Two 17-kDa Rat Parotid Gland Phosphoproteins, Subjects for Dephosphorylation upon β-Adrenergic Stimulation, as Destrin- and Cofilin-Like Proteins. The Journal of Biological Chemistry, 270, 8061-8067.
http://dx.doi.org/10.1074/jbc.270.14.8061
[4] Kanamori, T., Suzuki, M. and Titani, K. (1998) Complete Amino Acid Sequences and Phosphorylation Sites, Determined by Edman Degradation and Mass Spectrometry, of Rat Parotid Destrin- and Cofilin-Like Proteins. Archives of Oral Biology, 43, 955-967. http://dx.doi.org/10.1016/S0003-9969(98)00083-1
[5] Moon, A. and Drubin, D.G. (1995) The ADF/Cofilin Proteins: Stimulus-Responsive Modulators of Actin Dynamics. Molecular Biology of the Cell, 6, 1423-1431. http://dx.doi.org/10.1091/mbc.6.11.1423
[6] Perrin, D., Moller, K., Hanke, K. and Soling, H.D. (1992) cAMP and Ca2+-Mediated Secretion in Parotid Acinar Cells Is Associated with Reversible Changes in the Organization of the Cytoskeleton. The Journal of Cell Biology, 116, 127-134. http://dx.doi.org/10.1083/jcb.116.1.127
[7] Nakano, S., Kanamori, T., Suzuki, M. and Titani, K. (2003) Detection and Characterization of a Rat Parotid Gland Protein Kinase That Catalyzes Phosphorylation of Matured Destrin at Ser-2. Archives of Oral Biology, 48, 649-661. http://dx.doi.org/10.1016/S0003-9969(03)00129-8
[8] Kondo, C., Nakano, S., Suzuki, T. and Kanamori, T. (2007) An Easily Constructed, Inexpensive Device for Dot Blotting. Analytical Biochemistry, 370, 115-117. http://dx.doi.org/10.1016/j.ab.2007.05.015
[9] Armstrong, I.L. and Tate, W.P. (1980) A Simple Device for the Dialysis of Small Volumes. Analytical Biochemistry, 106, 469-470. http://dx.doi.org/10.1016/0003-2697(80)90549-7
[10] Fling, S.P. and Gregerson, D.S. (1986) Peptide and Protein Molecular Weight Determination by Electrophoresis Using a High-Molarity Tris Buffer System without Urea. Analytical Biochemistry, 155, 83-88. http://dx.doi.org/10.1016/0003-2697(86)90228-9
[11] Hartree, E.F. (1972) Determination of Protein: A Modification of the Lowry Method That Gives a Linear Photometric Response. Analytical Biochemistry, 48, 422-427.
http://dx.doi.org/10.1016/0003-2697(72)90094-2
[12] Ruzzene, M. and Pinna, L.A. (1999) Assay of Protein Kinases and Phosphatases Using Specific Peptide Substrates. In: Hardie, D.G., Ed., Protein Phosphorylation, 2nd Edition, Oxford University Press, New York, 221-253.
[13] Marcu, M.G., Chadli, A., Bouhouche, I., Catelli, M. and Neckers, L.M. (2000) The Heat Shock Protein 90 Antagonist Novobiocin Interacts with a Previously Unrecognized ATP-Binding Domain in the Carboxyl Terminus of the Chaperone. The Journal of Biological Chemistry, 275, 37181-37186.
http://dx.doi.org/10.1074/jbc.M003701200
[14] Hathaway, G.M., Lubben, T.H. and Traugh, J.A. (1980) Inhibition of Casein Kinase II by Heparin. The Journal of Biological Chemistry, 255, 8038-8041.
[15] Bain, J., McLauchlan, H., Elliott, M. and Cohen, P. (2003) The Specificities of Protein Kinase Inhibitors: An Update. Biochemical Journal, 371, 199-204. http://dx.doi.org/10.1042/BJ20021535
[16] Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C.J., McLauchlan, H., Klevernic, I., Arthur, J.S., Alessi, D.R. and Cohen, P. (2007) The Selectivity of Protein Kinase Inhibitors: A Further Update. Biochemical Journal, 408, 297-315. http://dx.doi.org/10.1042/BJ20070797
[17] Davies, S.P., Reddy, H., Caivano, M. and Cohen, P. (2000) Specificity and Mechanism of Action of Some Commonly Used Protein Kinase Inhibitors. Biochemical Journal, 351, 95-105.
http://dx.doi.org/10.1042/0264-6021:3510095
[18] Morgan, T.E., Lockerbie, R.O., Minamide, L.S., Browning, M.D. and Bamburg, J.R. (1993) Isolation and Characterization of a Regulated Form of Actin Depolymerizing Factor. The Journal of Cell Biology, 122, 623-633. http://dx.doi.org/10.1083/jcb.122.3.623
[19] Hidaka, H. and Tanaka, T. (1983) Naphthalenesulfonamides as Calmodulin Antagonists. Methods in Enzymology, 102, 185-194. http://dx.doi.org/10.1016/S0076-6879(83)02019-4
[20] Caplan, A.J., Mandal, A.K. and Theodoraki, M.A. (2007) Molecular Chaperones and Protein Kinase Quality Control. Trends in Cell Biology, 17, 87-92. http://dx.doi.org/10.1016/j.tcb.2006.12.002
[21] D’Arcangelo, J.G., Stahmer, K.R. and Miller, E.A. (2013) Vesicle-Mediated Export from the ER: COPII Coat Function and Regulation. Biochimica et Biophysica Acta, 1833, 2464-2472.
http://dx.doi.org/10.1016/j.bbamcr.2013.02.003
[22] Wei, N. and Deng, X.W. (2003) The COP9 Signalosome. Annual Review of Cell and Developmental Biology, 19, 261- 286. http://dx.doi.org/10.1146/annurev.cellbio.19.111301.112449
[23] Shugrue, C.A., Kolen, E.R., Peters, H., Czernik, A., Kaiser, C., Matovcik, L., Hubbard, A.L. and Gorelick, F. (1999) Identification of the Putative Mammalian Orthologue of Sec31P, a Component of the COPII Coat. Journal of Cell Science, 112, 4547-4556.
[24] Lazarides, E. and Lindberg, U. (1974) Actin Is the Naturally Occurring Inhibitor of Deoxyribonuclease I. Proceedings of the National Academy of Sciences of the United States of America, 71, 4742-4746. http://dx.doi.org/10.1073/pnas.71.12.4742
[25] Morrissey, J.H. (1981) Silver Stain for Proteins in Polyacrylamide Gels: A Modified Procedure with Enhanced Uniform Sensitivity. Analytical Biochemistry, 117, 307-310.
http://dx.doi.org/10.1016/0003-2697(81)90783-1
[26] Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. and Mann, M. (2006) In-Gel Digestion for Mass Spectrometric Characterization of Proteins and Proteomes. Nature Protocols, 1, 2856-2860.
http://dx.doi.org/10.1038/nprot.2006.468
[27] Kanamori, T., Suzuki, M. and Titani, K. (1998) Complete Amino Acid Sequences and Phosphorylation Sites, Determined by Edman Degradation and Mass Spectrometry, of Rat Parotid Destrin- and Cofilin-Like Proteins. Archives of Oral Biology, 43, 955-967.
http://dx.doi.org/10.1016/S0003-9969(98)00083-1
[28] Wu, J., Gage, D.A. and Watson, J.T. (1996) A Strategy to Locate Cysteine Residues in Proteins by Specific Chemical Cleavage Followed by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Analytical Biochemistry, 235, 161-174.
http://dx.doi.org/10.1006/abio.1996.0108
[29] Brune, D.C. (1992) Alkylation of Cysteine with Acrylamide for Protein Sequence Analysis. Analytical Biochemistry, 207, 285-290.
http://dx.doi.org/10.1016/0003-2697(92)90013-W
[30] Cavins, J.F. and Friedman, M. (1968) Specific Modification of Protein Sulfhydryl Groups with α, β-Unsaturated Compounds. The Journal of Biological Chemistry, 243, 3357-3360.
[31] Wei, N. and Deng, X.W. (2003) The COP9 Signalosome. Annual Review of Cell and Developmental Biology, 19, 261- 286.
http://dx.doi.org/10.1146/annurev.cellbio.19.111301.112449