Back
 JAMP  Vol.2 No.7 , June 2014
Application of the Two Nonzero Component Lemma in Resource Allocation
Abstract: In this paper we will generalize the author's two nonzero component lemma to general self-reducing functions and utilize it to find closed from answers for some resource allocation problems.
Cite this paper: Seddighin, M. (2014) Application of the Two Nonzero Component Lemma in Resource Allocation. Journal of Applied Mathematics and Physics, 2, 653-661. doi: 10.4236/jamp.2014.27072.
References

[1]   Gustafson, K. and Rao, D. (1997) Numerical Range. Springer, New York.
http://dx.doi.org/10.1007/978-1-4613-8498-4

[2]   Gustafson, K. and Seddighin, M. (1989) Antieigenvalue Bounds. Journal of Mathematical Analysis and Applications, 143, 327-340.
http://dx.doi.org/10.1016/0022-247X(89)90044-9

[3]   Seddighin, M. (2002) Antieigenvalues and Total Antieigenvalues of Normal Operators. Journal of Mathematical Analysis and Applications, 274, 239-254.
http://dx.doi.org/10.1016/S0022-247X(02)00295-0

[4]   Seddighin, M. (2009) Antieigenvalue Techniques in Statistics. Linear Algebra and Its Applications, 430, 2566-2580.
http://dx.doi.org/10.1016/j.laa.2008.05.007

[5]   Seddighin, M. and Gustafson, K. (2005) On the Eigenvalues which Express Antieigenvalues. International Journal of Mathematics and Mathematical Sciences, 2005, 1543-1554.
http://dx.doi.org/10.1155/IJMMS.2005.1543

[6]   Ibaraki, T. and Katoh, N. (1988) Resource Allocation Problems. The MIT Press, Cambridge.

[7]   Cameron, R. and Kouvartakis, B. (1980) Minimizing the Norm of Output Feedback Controllers Used in Pole Placement: A Dyadic Approach. International Journal of Control, 32, 759-770.
http://dx.doi.org/10.1080/00207178008922889

 
 
Top