Back
 AJPS  Vol.5 No.13 , June 2014
Genetic Analysis of Tomato Fruit Ripening at Polypeptide Profiles Level through Quantitative and Multivariate Approaches
Abstract: Multivariate analysis became essential in functional and structural Genomics because of the large quantity of biological data provided by these new research areas. Diallel mating design was widely applied to analyze the heritability of quantitative traits but it was recently used for approaching to the inheritance patterns of other levels of gene expression such as transcript profiles. Investigating the inheritance pattern of total polypeptide profiles with a diallel design remains as a vacancy subject. The objective of the present research was to infer the inheritance of total polypeptides profiles from tomato pericarp tissue at four different ripening stages in a diallel mating design including five recombinant inbred lines (RILs) and their ten second cycle hybrids (SCH). To achieve this objective, a multivariate analysis was applied to identify eventual inheritance patterns through a data mining approach and then univariate analyses were used to verify these patterns. Mainly dominance and also overdominance, though in a minor percentage, contributed to the gene actions involved in their genetic basis. Multivariate analysis was efficient in identifying inheritance patterns of total polypeptide profiles through a data mining approach, and univariate analyses largely verified the identified gene actions.
Cite this paper: Basté, E. , Costa, J. , Rodríguez, G. , Zorzoli, R. and Pratta, G. (2014) Genetic Analysis of Tomato Fruit Ripening at Polypeptide Profiles Level through Quantitative and Multivariate Approaches. American Journal of Plant Sciences, 5, 1926-1935. doi: 10.4236/ajps.2014.513206.
References

[1]   Jombart, T., Pontier, D. and Dufour, A.B. (2009) Genetic Markers in the Playground of Multivariate Analysis. Heredity, 102, 330-341.
http://dx.doi.org/10.1038/hdy.2008.130

[2]   Swanson-Wagner, R.A., Jia, I., De Cook, R., Borsuk, L.A., Nettleton, D. and Schnable, P.S. (2006) All Possible Modes of Gene Action Are Observed in a Global Comparison of Gene Expression in a Maize F1 Hybrid and Its Inbred Parents. Proceedings of the National Academy of Sciences of the United States of America, 103, 6805-6810.
http://dx.doi.org/10.1073/pnas.0510430103

[3]   Hoecker, N., Keller, B., Muthreich, N., Chollet, D., Descombes, P., Piepho, H.P. and Hochholdinger, F. (2008) Comparison of Maize (Zea mays L.) F1-Hybrid and Parental Inbred Line Primary Root Transcriptomes Suggests Organ-Specific Patterns of Nonadditive Gene Expression and Conserved Expression Trends. Genetics, 179, 1275-1283.
http://dx.doi.org/10.1534/genetics.108.088278

[4]   Lisec, J., Römisch-Margl, L., Nikoloski, Z., Piepho, H.P., Giavalisco, P., Selbig, J., Gierl, A. and Willmitzer, L. (2011) Corn Hybrids Display Lower Metabolite Variability and Complex Metabolite Inheritance Patterns. The Plant Journal, 68, 326-336. http://dx.doi.org/10.1111/j.1365-313X.2011.04689.x

[5]   Hochholdinger, F. and Hoecker, N. (2007) Towards the Molecular Basis of Heterosis. Trends in Plant Sciences, 12, 427-432.
http://dx.doi.org/10.1016/j.tplants.2007.08.005

[6]   Akihiro, T., Koike, S., Tani, R., Tominaga, T., Watanabe, S., Iijima, Y., Aoki, K., Shibata, D., Ashihara, H., Matsukura, C., Akama, K., Fujimura, T. and Ezura, H. (2008) Biochemical Mechanism on GABA Accumulation during Fruit Development in Tomato. Plant and Cell Physiology, 49, 1378-1389.
http://dx.doi.org/10.1093/pcp/pcn113

[7]   Yin, Y.G., Tominaga, T., Iijima, Y., Aoki, K., Shibata, D., Ashihara, H., Nishimura, S., Ezura, H. and Matsukura, C. (2010) Metabolic Alterations in Organic Acids and γ-Aminobutyric Acid in Developing Tomato (Solanum lycopersicum L.) Fruits. Plant and Cell Physiology, 51, 1300-1314. http://dx.doi.org/10.1093/pcp/pcq090

[8]   Oms-Oliu, G., Hertog, M.L.A.T.M., Van de Poel, B., Ampofo-Asiama, J., Geeraerd, A.H. and Nicolaï, B.M. (2011) Metabolic Characterization of Tomato Fruit during Preharvest Development, Ripening, and Postharvest Shelf-Life. Postharvest Biology and Technology, 62, 7-16.
http://dx.doi.org/10.1016/j.postharvbio.2011.04.010

[9]   Carrari, F. and Fernie, A.R. (2006) Metabolic Regulation Underlying Tomato Fruit Development. Journal of Experimental Botany, 57, 1883-1897.
http://dx.doi.org/10.1093/jxb/erj020

[10]   Faurobert, M., Mihr, C., Bertin, N., Pawlowski, T., Negroni, L., Sommerer, N. and Causse, M. (2007) Major Proteome Variations Associated with Cherry Tomato Pericarp Development and Ripening. Plant Physiology, 143, 1327-1346.
http://dx.doi.org/10.1104/pp.106.092817

[11]   Kahlau, S. and Bock, R. (2008) Plastid Transcriptomics and Translatomics of Tomato Fruit Development and Chloroplast-to-Chromoplast Differentiation: Chromoplast Gene Expression Largely Serves the Production of a Single Protein. The Plant Cell, 20, 856-874.
http://dx.doi.org/10.1105/tpc.107.055202

[12]   Rodríguez, G.R., Sequin, L., Pratta, G.R., Zorzoli, R. and Picardi, L.A. (2008) Protein Profiling in F1 and F2 Generations of Two Tomato Genotypes Differing in Ripening Time. Biologia Plantarum, 52, 548-522.
http://dx.doi.org/10.1007/s10535-008-0107-3

[13]   Rodríguez, G.R., da Costa J.H.P., Tomat, D.D., Pratta, G.R., Zorzoli, R. and Picardi, L.A. (2011) Pericarp Total Protein Profiles as Molecular Markers of Tomato Fruit Quality Traits in Two Segregating Populations. Scientia Horticulturae, 130, 60-66. http://dx.doi.org/10.1016/j.scienta.2011.06.004

[14]   Gallo, M., Rodríguez, G.R., Zorzoli, R. and Pratta, G.R. (2011) Ligamiento entre caracteres cuantitativos de calidad de fruto y perfiles polipeptídicos del pericarpio en dos estados de madurez en tomate. Revista de la Facultad de Ciencias Agrarias Universidad Nacional de Cuyo, 43, 145-156.

[15]   Gallo, M., Rodríguez, G.R., Zorzoli, R., Picardi, L.A. and Pratta, G.R. (2010) Proteómica de la madurez del tomate. Revista de la Facultad de Ciencias Agrarias Universidad Nacional de Cuyo, 42, 119-133.

[16]   Liberatti, D.R., Rodríguez, G.R., Zorzoli, R. and Pratta, G.R. (2013) Tomato Second Cycle Hybrids Differ from Their Parents at Three Levels of Genetic Variation. International Journal of Plant Breeding, 7, 1-6.

[17]   Mahmoud, A.A., Sukumar, S. and Krishnan, H.B. (2008) Interspecific Rice Hybrid of Oryza sativa × Oryza nivara Reveals a Significant Increase in Seed Protein Content. Journal of Agricultural and Food Chemistry, 56, 476-482.
http://dx.doi.org/10.1021/jf071776n

[18]   Hoecker, N., Lamkemeyer, T., Sarholz, B., Paschold, A., Fladerer, C., Madlung, J., Wurster, K., Stahl, M., Piepho, H.P., Nordheim, A. and Hochholdinger, F. (2008) Analysis of Nonadditive Protein Accumulation in Young Primary Roots of a Maize (Zea mays L.) F1-Hybrid Compared to Its Parental Inbred Lines. Proteomics, 8, 3882-3894.
http://dx.doi.org/10.1002/pmic.200800023

[19]   Cheema, N.M., Malik, M.A., Qadir, G. and Rabbani, M.A. (2010) Characterization of Castor Bean Genotypes under Various Environments Using SDS-PAGE of Total Seed Storage Proteins. Pakistan Journal of Botany, 42, 1797-1805.

[20]   Griffing, B. (1956) Concept of General and Specific Combining Ability in Relation to Diallel Crossing Systems. Australian Journal of Biological Sciences, 9, 463-493.

[21]   Zwarts, L., Magwire, M.M., Carbone, M.A., Verstevena, M., Herteleer, L., Anholt, R.R.H., Callaertsa, P. and Mackay, T.F.C. (2011) Complex Genetic Architecture of Drosophila Aggressive Behavior. Proceedings of the National Academy of Sciences of the United States of America, 108, 17070-17075.
http://dx.doi.org/10.1073/pnas.1113877108

[22]   Yang, D.G., Ye, C.Y., Ma, X.F., Zhu, Z.H., Zhou, X.J., Wang, H.F., Meng, Q.Q., Pei, X.Y., Yu, S.X. and Zhu, J. (2012) A New Approach to Dissecting Complex Traits by Combining Quantitative Trait Transcript (QTT) Mapping and Diallel Cross Analysis. Chinese Science Bulletin, 57, 2695-2700. http://dx.doi.org/10.1007/s11434-012-5196-x

[23]   Rodríguez, G.R., Pratta, G.R., Zorzoli, R. and Picardi, L.A. (2006) Recombinant Lines Obtained from an Interspecific Cross between Lycopersicon Species Selected by Fruit Weight and Fruit Shelf Life. Journal of the American Society for Horticultural Science, 131, 651-656.

[24]   MarchionniBasté, E., Liberatti, D.R., Mahuad, S.L., Rodríguez, G.R., Pratta, G.R., Zorzoli, R. and Picardi, L.A. (2010) Diallel Analysis for Fruit Traits among Tomato Recombinant Inbred Lines Derived from an Interspecific Cross Solanum lycopersicum × S. pimpinellifolium. Journal of Applied Horticulture, 12, 21-25.

[25]   Giovannoni, J.J. (2004) Genetic Regulation of Fruit Development and Ripening. The Plant Cell, 16, S170-S180.
http://dx.doi.org/10.1105/tpc.019158

[26]   Pratta, G., Rodríguez, G.R., Zorzoli, R., Picardi, L.A. and Valle, E.M. (2011) Biodiversity in a Tomato Germplasm for Free Amino Acids and Pigment Content of Ripening Fruits. American Journal of Plant Sciences, 2, 255-261.
http://dx.doi.org/10.4236/ajps.2011.22027

[27]   Rapp, R.A., Udall, J.A. and Wendel, J.F. (2009) Genomic Expression Dominance in Allopolyploids. BMC Biology, 7, 18.
http://dx.doi.org/10.1186/1741-7007-7-18

[28]   Marcon, C., Schützenmeister, A., Schütz, W., Madlung, J., Piepho, H.P. and Hochholdinger, F. (2010) Nonadditive Protein Accumulation Patterns in Maize (Zea mays L.) Hybrids during Embryo Development. Journal of Proteome Research, 9, 6511-6522.
http://dx.doi.org/10.1021/pr100718d

[29]   Vianna, J.M.S. (2000) The Parametric Restrictions of the Griffing Diallel Analysis Model: Combining Ability Analysis. Genetics and Molecular Biology, 23, 877-881. http://dx.doi.org/10.1590/S1415-47572000000400029

[30]   Hill, J., Lethenborg, P., Li, P.W., Rahman, M.H., Sørensen, H. and Sørensen, J.C. (2003) Inheritance of Progoitrin and Total Aliphatic Glucosinolates in Oilseed Rape (Brassica napus L). Euphytica, 134, 179-187.
http://dx.doi.org/10.1023/B:EUPH.0000003857.57573.2f

[31]   Wang, Y.M., Dong, Z.Y., Zhang, Z.J., Lin, X.Y., Shen, Y., Zhou, D. and Liu, B. (2005) Extensive de Novo Genomic Variation in Rice Induced by Introgression from Wild Rice (Zizania latifolia Griseb.). Genetics, 170, 1945-1956.
http://dx.doi.org/10.1534/genetics.105.040964

[32]   Dong, Z.Y., Wang, H.Y., Dong, Y.Z., Wang, Y.M., Liu, W., Miao, G.J., Lin, X.Y., Wang, D.Q. and Liu, B. (2013) Extensive Microsatellite Variation in Rice Induced by Introgression from Wild Rice (Zizania latifolia Griseb.). PLoS ONE, 8, Article ID: e62317. http://dx.doi.org/10.1371/journal.pone.0062317

 
 
Top