[1] Jombart, T., Pontier, D. and Dufour, A.B. (2009) Genetic Markers in the Playground of Multivariate Analysis. Heredity, 102, 330-341.
http://dx.doi.org/10.1038/hdy.2008.130
[2] Swanson-Wagner, R.A., Jia, I., De Cook, R., Borsuk, L.A., Nettleton, D. and Schnable, P.S. (2006) All Possible Modes of Gene Action Are Observed in a Global Comparison of Gene Expression in a Maize F1 Hybrid and Its Inbred Parents. Proceedings of the National Academy of Sciences of the United States of America, 103, 6805-6810.
http://dx.doi.org/10.1073/pnas.0510430103
[3] Hoecker, N., Keller, B., Muthreich, N., Chollet, D., Descombes, P., Piepho, H.P. and Hochholdinger, F. (2008) Comparison of Maize (Zea mays L.) F1-Hybrid and Parental Inbred Line Primary Root Transcriptomes Suggests Organ-Specific Patterns of Nonadditive Gene Expression and Conserved Expression Trends. Genetics, 179, 1275-1283.
http://dx.doi.org/10.1534/genetics.108.088278
[4] Lisec, J., Römisch-Margl, L., Nikoloski, Z., Piepho, H.P., Giavalisco, P., Selbig, J., Gierl, A. and Willmitzer, L. (2011) Corn Hybrids Display Lower Metabolite Variability and Complex Metabolite Inheritance Patterns. The Plant Journal, 68, 326-336. http://dx.doi.org/10.1111/j.1365-313X.2011.04689.x
[5] Hochholdinger, F. and Hoecker, N. (2007) Towards the Molecular Basis of Heterosis. Trends in Plant Sciences, 12, 427-432.
http://dx.doi.org/10.1016/j.tplants.2007.08.005
[6] Akihiro, T., Koike, S., Tani, R., Tominaga, T., Watanabe, S., Iijima, Y., Aoki, K., Shibata, D., Ashihara, H., Matsukura, C., Akama, K., Fujimura, T. and Ezura, H. (2008) Biochemical Mechanism on GABA Accumulation during Fruit Development in Tomato. Plant and Cell Physiology, 49, 1378-1389.
http://dx.doi.org/10.1093/pcp/pcn113
[7] Yin, Y.G., Tominaga, T., Iijima, Y., Aoki, K., Shibata, D., Ashihara, H., Nishimura, S., Ezura, H. and Matsukura, C. (2010) Metabolic Alterations in Organic Acids and γ-Aminobutyric Acid in Developing Tomato (Solanum lycopersicum L.) Fruits. Plant and Cell Physiology, 51, 1300-1314. http://dx.doi.org/10.1093/pcp/pcq090
[8] Oms-Oliu, G., Hertog, M.L.A.T.M., Van de Poel, B., Ampofo-Asiama, J., Geeraerd, A.H. and Nicolaï, B.M. (2011) Metabolic Characterization of Tomato Fruit during Preharvest Development, Ripening, and Postharvest Shelf-Life. Postharvest Biology and Technology, 62, 7-16.
http://dx.doi.org/10.1016/j.postharvbio.2011.04.010
[9] Carrari, F. and Fernie, A.R. (2006) Metabolic Regulation Underlying Tomato Fruit Development. Journal of Experimental Botany, 57, 1883-1897.
http://dx.doi.org/10.1093/jxb/erj020
[10] Faurobert, M., Mihr, C., Bertin, N., Pawlowski, T., Negroni, L., Sommerer, N. and Causse, M. (2007) Major Proteome Variations Associated with Cherry Tomato Pericarp Development and Ripening. Plant Physiology, 143, 1327-1346.
http://dx.doi.org/10.1104/pp.106.092817
[11] Kahlau, S. and Bock, R. (2008) Plastid Transcriptomics and Translatomics of Tomato Fruit Development and Chloroplast-to-Chromoplast Differentiation: Chromoplast Gene Expression Largely Serves the Production of a Single Protein. The Plant Cell, 20, 856-874.
http://dx.doi.org/10.1105/tpc.107.055202
[12] Rodríguez, G.R., Sequin, L., Pratta, G.R., Zorzoli, R. and Picardi, L.A. (2008) Protein Profiling in F1 and F2 Generations of Two Tomato Genotypes Differing in Ripening Time. Biologia Plantarum, 52, 548-522.
http://dx.doi.org/10.1007/s10535-008-0107-3
[13] Rodríguez, G.R., da Costa J.H.P., Tomat, D.D., Pratta, G.R., Zorzoli, R. and Picardi, L.A. (2011) Pericarp Total Protein Profiles as Molecular Markers of Tomato Fruit Quality Traits in Two Segregating Populations. Scientia Horticulturae, 130, 60-66. http://dx.doi.org/10.1016/j.scienta.2011.06.004
[14] Gallo, M., Rodríguez, G.R., Zorzoli, R. and Pratta, G.R. (2011) Ligamiento entre caracteres cuantitativos de calidad de fruto y perfiles polipeptídicos del pericarpio en dos estados de madurez en tomate. Revista de la Facultad de Ciencias Agrarias Universidad Nacional de Cuyo, 43, 145-156.
[15] Gallo, M., Rodríguez, G.R., Zorzoli, R., Picardi, L.A. and Pratta, G.R. (2010) Proteómica de la madurez del tomate. Revista de la Facultad de Ciencias Agrarias Universidad Nacional de Cuyo, 42, 119-133.
[16] Liberatti, D.R., Rodríguez, G.R., Zorzoli, R. and Pratta, G.R. (2013) Tomato Second Cycle Hybrids Differ from Their Parents at Three Levels of Genetic Variation. International Journal of Plant Breeding, 7, 1-6.
[17] Mahmoud, A.A., Sukumar, S. and Krishnan, H.B. (2008) Interspecific Rice Hybrid of Oryza sativa × Oryza nivara Reveals a Significant Increase in Seed Protein Content. Journal of Agricultural and Food Chemistry, 56, 476-482.
http://dx.doi.org/10.1021/jf071776n
[18] Hoecker, N., Lamkemeyer, T., Sarholz, B., Paschold, A., Fladerer, C., Madlung, J., Wurster, K., Stahl, M., Piepho, H.P., Nordheim, A. and Hochholdinger, F. (2008) Analysis of Nonadditive Protein Accumulation in Young Primary Roots of a Maize (Zea mays L.) F1-Hybrid Compared to Its Parental Inbred Lines. Proteomics, 8, 3882-3894.
http://dx.doi.org/10.1002/pmic.200800023
[19] Cheema, N.M., Malik, M.A., Qadir, G. and Rabbani, M.A. (2010) Characterization of Castor Bean Genotypes under Various Environments Using SDS-PAGE of Total Seed Storage Proteins. Pakistan Journal of Botany, 42, 1797-1805.
[20] Griffing, B. (1956) Concept of General and Specific Combining Ability in Relation to Diallel Crossing Systems. Australian Journal of Biological Sciences, 9, 463-493.
[21] Zwarts, L., Magwire, M.M., Carbone, M.A., Verstevena, M., Herteleer, L., Anholt, R.R.H., Callaertsa, P. and Mackay, T.F.C. (2011) Complex Genetic Architecture of Drosophila Aggressive Behavior. Proceedings of the National Academy of Sciences of the United States of America, 108, 17070-17075.
http://dx.doi.org/10.1073/pnas.1113877108
[22] Yang, D.G., Ye, C.Y., Ma, X.F., Zhu, Z.H., Zhou, X.J., Wang, H.F., Meng, Q.Q., Pei, X.Y., Yu, S.X. and Zhu, J. (2012) A New Approach to Dissecting Complex Traits by Combining Quantitative Trait Transcript (QTT) Mapping and Diallel Cross Analysis. Chinese Science Bulletin, 57, 2695-2700. http://dx.doi.org/10.1007/s11434-012-5196-x
[23] Rodríguez, G.R., Pratta, G.R., Zorzoli, R. and Picardi, L.A. (2006) Recombinant Lines Obtained from an Interspecific Cross between Lycopersicon Species Selected by Fruit Weight and Fruit Shelf Life. Journal of the American Society for Horticultural Science, 131, 651-656.
[24] MarchionniBasté, E., Liberatti, D.R., Mahuad, S.L., Rodríguez, G.R., Pratta, G.R., Zorzoli, R. and Picardi, L.A. (2010) Diallel Analysis for Fruit Traits among Tomato Recombinant Inbred Lines Derived from an Interspecific Cross Solanum lycopersicum × S. pimpinellifolium. Journal of Applied Horticulture, 12, 21-25.
[25] Giovannoni, J.J. (2004) Genetic Regulation of Fruit Development and Ripening. The Plant Cell, 16, S170-S180.
http://dx.doi.org/10.1105/tpc.019158
[26] Pratta, G., Rodríguez, G.R., Zorzoli, R., Picardi, L.A. and Valle, E.M. (2011) Biodiversity in a Tomato Germplasm for Free Amino Acids and Pigment Content of Ripening Fruits. American Journal of Plant Sciences, 2, 255-261.
http://dx.doi.org/10.4236/ajps.2011.22027
[27] Rapp, R.A., Udall, J.A. and Wendel, J.F. (2009) Genomic Expression Dominance in Allopolyploids. BMC Biology, 7, 18.
http://dx.doi.org/10.1186/1741-7007-7-18
[28] Marcon, C., Schützenmeister, A., Schütz, W., Madlung, J., Piepho, H.P. and Hochholdinger, F. (2010) Nonadditive Protein Accumulation Patterns in Maize (Zea mays L.) Hybrids during Embryo Development. Journal of Proteome Research, 9, 6511-6522.
http://dx.doi.org/10.1021/pr100718d
[29] Vianna, J.M.S. (2000) The Parametric Restrictions of the Griffing Diallel Analysis Model: Combining Ability Analysis. Genetics and Molecular Biology, 23, 877-881. http://dx.doi.org/10.1590/S1415-47572000000400029
[30] Hill, J., Lethenborg, P., Li, P.W., Rahman, M.H., Sørensen, H. and Sørensen, J.C. (2003) Inheritance of Progoitrin and Total Aliphatic Glucosinolates in Oilseed Rape (Brassica napus L). Euphytica, 134, 179-187.
http://dx.doi.org/10.1023/B:EUPH.0000003857.57573.2f
[31] Wang, Y.M., Dong, Z.Y., Zhang, Z.J., Lin, X.Y., Shen, Y., Zhou, D. and Liu, B. (2005) Extensive de Novo Genomic Variation in Rice Induced by Introgression from Wild Rice (Zizania latifolia Griseb.). Genetics, 170, 1945-1956.
http://dx.doi.org/10.1534/genetics.105.040964
[32] Dong, Z.Y., Wang, H.Y., Dong, Y.Z., Wang, Y.M., Liu, W., Miao, G.J., Lin, X.Y., Wang, D.Q. and Liu, B. (2013) Extensive Microsatellite Variation in Rice Induced by Introgression from Wild Rice (Zizania latifolia Griseb.). PLoS ONE, 8, Article ID: e62317. http://dx.doi.org/10.1371/journal.pone.0062317