[1] Aggarwal, C.C. (2006) Data Streams: Models and Algorithms (Advances in Database Systems). Springer, Secaucus.
[2] Gantz, J., Reinsel, D., Chute, C., Schlichting, W., McArthur, J., Minton, S., Xheneti, I., Toncheva, A. and Manfrediz, A. (2007) The Expanding Digital Universe: A Forecast of Worldwide Information Growth through 2010. Technical Report, 12, 634-638.
[3] Gaber, M.M., Zaslavsky, A. and Krishnaswamy, S. (2005) Mining Data Streams: A Review. SIGMOD Record, 34, 18-26. http://dx.doi.org/10.1145/1083784.1083789
[4] Aggarwal, C.C., Han, J., Wang, J. and Yu, P. (2003) A Framework for Clustering Evolving Data Streams. In: Proceedings of 29th International Conference on Very Large Data Bases (VLDB’03), Berlin, September 2003.
[5] Aggarwal, C.C., Han, J.W., Wang, J.Y. and Yu, P.S. (2006) On Clustering Massive Data Streams: A Summarization Paradigm. In: Aggarwal, C.C., Ed., Data Streams—Models and Algorithms, Springer, Boston, 11-38.
[6] Babock, B., Datar, M., Motwani, R. and O’Callaghan, L. (2003) Maintaining Variance and k-Medians over Data Stream Windows. Proceedings of the 22nd ACM Symposium on Principles of Data Base Systems, San Diego, 234-243.
[7] Barbará, D. (2002) Requirements for Clustering Data Streams. SIGKDD Explorations Newsletter, 3, 23-27. http://dx.doi.org/10.1145/507515.507519
[8] Beringher, J. and Hullermeier, E. (2006) Online Clustering of Parallel Data Streams. Data & Knowledge Engineering, 58, 180-204. http://dx.doi.org/10.1016/j.datak.2005.05.009
[9] Cao, F., Ester, M., Qian, W. and Zhou, A. (2006) Density-Based Clustering over Evolving Data Stream with Noise. Proceedings of the 6th SIAM International Conference on Data Mining (SIAM’06), Bethesda, 326-337.
[10] Charikar, M., O’Callaghan, L. and Panigrahy, R. (2003) Better Streaming Algorithms for Clustering Problems. Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC’03), San Diego, 30-39.
[11] Chen, Y. and Li, T. (2007) Density-Based Clustering for Real-Time Stream Data. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’07), ACM, New York, 133-142.
[12] Guha, S., Meyerson, A., Mishra, N., Motwani, R. and O’Callaghan, L. (2003) Clustering Data Streams: Theory and Practice. IEEE Transactions on Knowledge and Data Engineering, 15, 515-528. http://dx.doi.org/10.1109/TKDE.2003.1198387
[13] Joao, G. (2009) An Overview on Mining Data Streams. Springer-Verlag, Berlin, Heidelberg, 29-45.
[14] Zhu, Y.Y. and Shasha, D. (2002) StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time. Proceedings of the 28th International Conference on Very Large Data Bases, Hong Kong, 358-369.
[15] Ester, M., Kriegel, H.-P., Jrg, S. and Xu, X. (1996) A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Proceedings of the 2nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’96), Portland, 373-382.
[16] Tu, L. and Chen, Y.X. (2009) Stream Data Clustering Based on Grid Density and Attractions. ACM Transaction Knowledge Discovery Data, 3, 12:1-12:27.
[17] Guha, S., Mishra, N., Motwani, R. and O’Callaghan, L. (2000) Clustering Data Streams. In: Proceedings of the Annual IEEE Symposium on Foundations of Computer Science, Redondo Beach, 12-14 November 2000, 359-366.
[18] O’Callaghan, L., Mishra, N., Mishra, N. and Guha, S. (2002) Streaming-Data Algorithms for High Quality Clustering. Proceedings of the 18th International Conference on Data Engineering (ICDE’01), San Jose, 685-694.
[19] Anuradha, Y., Murthy, J.V.R. and Krishnaprasad, M.H.M. (2014) Clustering Based on Correlation Fractal Dimension over an Evolving Data Stream. Communicated to IJAIT 2014, unpublished.
[20] Anuradha, Y., Murthy, J.V.R. and Krishnaprasad, M.H.M. (2013) Estimating Correlation Dimension Using Multi Layered Grid and Damped Window Model over Data Streams. Procedia Technology, 10, 797-804. http://dx.doi.org/10.1016/j.protcy.2013.12.424
[21] Belussi, A. (1995) Estimating the Selectivity of Spatial Queries Using the Correlation Fractal Dimension. Proceedings of 21st International Conference on Very Large Data Bases, Zurich, 11-15 September 1995.
[22] Li, G.L., et al. (2011) Fractal-Based Algorithm for Anomaly Pattern Discovery on Time Series Stream. Journal of Convergence Information Technology, 6, 181-187.
http://dx.doi.org/10.4156/jcit.vol6.issue3.20
[23] Kennedy, J.F. and Eberhart, R.C. (1995) Particle Swarm Optimization. Proceedings of the IEEE International Conference on Neural Networks, 4, 1942-1948.
http://dx.doi.org/10.1109/ICNN.1995.488968
[24] Shi, Y. and Eberhart, R.C. (1998) Parameter Selection in Particle Swarm Optimization. Evolutionary Programming VII, Springer. Lecture Notes in Computer Science, 1447, 591-600.
http://dx.doi.org/10.1007/BFb0040810