OJAppS  Vol.4 No.7 , June 2014
The Effect of Relative Humidity on Continental Average Aerosols
In this paper, the authors extracted and investigated the effect of relative humidity (RH) on some microphysical and optical properties of continental polluted aerosols from OPAC (Optical Properties of Aerosols and Clouds) at the spectral range of 0.25 μm to 2.5 μm and eight relative humidities (0%, 50%, 70%, 80%, 90%, 95%, 98%, and 99%). The microphysical properties extracted were radii, volume, number and mass mix ratios as functions of RH while the optical properties were optical depth, extinction, scattering and absorption coefficients single scattering albedo, refractive indices and asymmetric parameters also at eight RHs. Using the microphysical properties, effective hygroscopic growth factors and effective radii of the mixtures were determined while using optical properties we determined the enhancement parameters, effective refractive indices and angstrom coefficients. Using the effective hygroscopic growth, we determined the dependence of the effective hygroscopicity parameter as a function of RH, while using enhancement parameters; we determined the effect of humidification factor on RH and wavelengths. The effective hygroscopic growth and enhancement parameters were then parameterized using some models to determine the effective hygroscopicity parameter, bulk hygroscopicity and humidification factors. We observed that the data fitted the models very well. The effective radii decrease with the increase in RH while the effective hygroscopic growth increases with the increase in RH, and this is in line with the increase in angstrom parameters, and this shows increase in mode size with the increase in RH. The angstrom coefficients show that the mixture has a bimodal type of distribution with the dominance of fine mode particles.

Cite this paper
Tijjani, B. , Aliyu, A. and Sha’aibu, F. (2014) The Effect of Relative Humidity on Continental Average Aerosols. Open Journal of Applied Sciences, 4, 399-423. doi: 10.4236/ojapps.2014.47038.
[1]   Solomon, S., Qin, D., Manning, M., Alley, R.B., Berntsen, T., Bindoff, N.L., Chen, Z., Chidthaisong, A., Gregory, J.M., Hegerl, G.C., Heimann, M., Hewitson, B., Hoskins, B.J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Somerville, R., Stocker, T.F., Whetton, P., Wood, R.A. and Wratt, D. (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change—Technical Summary. Cambridge University Press, Cambridge, 19-92.

[2]   McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M.C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T.F., Murphy, D.M., O’Dowd, C.D., Snider, J.R. and Weingartner, E. (2006) The Effect of Physical and Chemical Aerosol Properties on Warm Cloud Droplet Activation. Atmospheric Chemistry and Physics, 6, 2593-2649.

[3]   Kusmierczyk-Michulec, J. (2009) Ångström Coefficient as an Indicator of the Atmospheric Aerosol Type for a Well-Mixed Atmospheric Boundary Layer: Part 1: Model Development. Oceanologia, 51, 5-38.

[4]   Swietlicki, E., Hansson, H.C., Hämeri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P.H., Petäjä, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A. and Kulmala, M. (2008) Hygroscopic Properties of Submicrometer Atmospheric Aerosol Particles Measured with H-TDMA Instruments in Various Environments: A Review. Tellus B, 60, 432-469.

[5]   Rissler, J., Svenningsson, B., Fors, E.O., Bilde, M. and Swietlicki, E. (2010) An Evaluation and Comparison of Cloud Condensation Nucleus Activity Models: Predicting Particle Critical Saturation from Growth at Subsaturation. Journal of Geophysical Research: Atmospheres, 115, Published Online.

[6]   Cheng, Y.F., Wiedensohler, A., Eichler, H., Heintzenberg, J., Tesche, M., Ansmann, A., Wendisch, M., Su, H., Althausen, D., Herrmann, H., Gnauk, T., Brüggemann, E., Hu, M. and Zhang, Y.H. (2008) Relative Humidity Dependence of Aerosol Optical Properties and Direct Radiative Forcing in the Surface Boundary Layer at Xinken in Pearl River Delta of China: An Observation Based Numerical Study. Atmospheric Environment, 42, 6373-6397.

[7]   Haywood, J.M. and Boucher, O. (2000) Estimates of the Direct and Indirect Radiative Forcing Due to Tropospheric Aerosols: A Review. Reviews of Geophysics, 38, 513-543.

[8]   Tang, I.N., Tridico, A.C. and Fung, K.H. (1997) Thermodynamic and Optical Properties of Sea Salt Aerosols. Journal of Geophysical Research: Atmospheres, 102, 23269-23275.

[9]   Topping, D.O., McFiggans, G.B. and Coe, H. (2005) A Curved Multi-Component Aerosol Hygroscopicity Model Framework: Part 1-Inorganic Compounds. Atmospheric Chemistry and Physics, 5, 1205-1222.

[10]   Topping, D.O., McFiggans, G.B. and Coe, H. (2005) A Curved Multicomponent Aerosol Hygroscopicity Model Framework: Part 2-Including Organic Compounds. Atmospheric Chemistry and Physics, 5, 1223-1242.

[11]   Jacobson, M.Z. (2001) Strong Radiative Heating Due to the Mixing State of Black Carbon in Atmospheric Aerosols. Nature, 409, 695-697.

[12]   Moffet, R.C. and Prather, K.A. (2009) In-Situ Measurements of the Mixing State and Optical Properties of Soot with Implications for Radiative Forcing Estimates. Proceedings of the National Academy of Sciences of the United States of America, 106, 11872-11877.

[13]   Riemer, N., West, M., Zaveri, R.A. and Easter, R.C. (2009) Simulating the Evolution of Soot Mixing State with a Particle-Resolved Aerosol Model. Journal of Geophysical Research: Atmospheres, 114, Published Online.

[14]   Riemer, N., West, M., Zaveri, R. and Easter, R. (2010) Estimating Black Carbon Aging Time-Scales with a Particle-Resolved Aerosol Model. Journal of Aerosol Science, 41, 143-158.

[15]   Zhang, R., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H. and McMurry, P.H. (2008) Variability in Morphology, Hygroscopicity, and Optical Properties of Soot Aerosols during Atmospheric Processing. Proceedings of the National Academy of Sciences of the United States of America, 105, 10291-10296.

[16]   Oshima, N., Koike, M., Zhang, Y., Kondo, Y., Moteki, N., Takegawa, N. and Miyazaki, Y. (2009) Aging of Black Carbon in Outflow from Anthropogenic Sources Using a Mixing State Resolved Model: Model Development and Evaluation. Journal of Geophysical Research: Atmospheres, 114, Published Online.

[17]   IPCC (2007) Climate Change 2007: The Scientific Basis. In: Solomon, S., Ding, Y., Griggs, D.G., Noguer, M., Vanderlinden, P.G., Dai, X., Maskell, K. and Johnson, C.A., Eds., Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.

[18]   Li, W.F, Bai, Z.P., Liu, A.X., Chen, J. and Chen, L. (2009) Characteristics of Major PM2.5 Components during Winter in Tianjin, China. Aerosol and Air Quality Research, 9, 105-119.

[19]   Shen, Z.X., Cao, J.J, Tong, Z., Liu, S.X., Reddy, L.S.S., Han, Y.M, Zhang, T. and Zhou, J. (2009) Chemical Characteristics of Submicron Particles in Winter in Xi’an. Aerosol and Air Quality Research, 9, 80-93.

[20]   Martin, S.T., Hung, H.M., Park, R.J., Jacob, D.J., Spurr, R.J.D., Chance, K.V. and Chin, M. (2004) Effects of the Physical State of Tropospheric Ammonium-Sulfate-Nitrate Particles on Global Aerosol Direct Radiative Forcing. Atmospheric Chemistry and Physics, 4, 183-214.

[21]   Wang, J., Hoffmann, A.A., Park, R.J., Jacob, D.J. and Martin, S.T. (2008) Global Distribution of Solid and Aqueous Sulfate Aerosols: Effect of the Hysteresis of Particle Phase Transitions. Journal of Geophysical Research: Atmospheres, 113, Published Online.

[22]   Wang, J., Jacob, D.J. and Martin S.T. (2008) Sensitivity of Sulfate Direct Climate Forcing to the Hysteresis of Particle Phase Transitions. Journal of Geophysical Research: Atmospheres, 113, Published Online.

[23]   Köhler, H. (1936) The Nucleus in and Growth of Hygroscopic Droplets. Transactions of the Faraday Society, 32, 1152-1161.

[24]   Petters, M.D. and Kreidenweis, S.M. (2007) A Single Parameter Representation of Hygroscopic Growth and Cloud Condensation Nucleus Activity. Atmospheric Chemistry and Physics, 7, 1961-1971.

[25]   Wex, H., Hennig, T., Salma, I., Ocskay, R., Kiselev, A., Henning, S., Massling, A., Wiedensohler, A. and Stratmann, F. (2007) Hygroscopic Growth and Measured and Modeled Critical Super-Saturations of an Atmospheric HULIS Sample. Geophysical Research Letters, 34, Published Online.

[26]   Andreae, M.O. and Rosenfeld, D. (2008) Aerosol-Cloud-Precipitation Interactions, Part 1, The Nature and Sources of Cloud-Active Aerosols. Earth-Science Reviews, 89, 13-41.

[27]   Gunthe, S.S., King, S.M., Rose, D., Chen, Q., Roldin, P., Farmer, D.K., Jimenez, J.L., Artaxo, P., Andreae, M.O., Martin, S.T. and Pöschl, U. (2009) Cloud Condensation Nuclei in Pristine Tropical Rainforest Air of Amazonia: Size-Resolved Measurements and Modeling of Atmospheric Aerosol Composition and CCN Activity. Atmospheric Chemistry and Physics, 9, 7551-7575.

[28]   Tijjani, B.I., Aliyu, A. and Shuaibu, F. (2013) The Effect of Relative Humidity on Continental Polluted Aerosols. FJNAS (Fire Journal of Natural and Applied Sciences), 1, 116-138.

[29]   Kammermann, L., Gysel, M., Weingartner, E. and Baltensperger, U. (2010) 13-Month Climatology of the Aerosol Hygroscopicity at the Free Tropospheric Site Jungfraujoch (3580 m a.s.l.). Atmospheric Chemistry and Physics, 10, 10717-10732.

[30]   Hess, M., Koepke, P. and Schult, I. (1998) Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bulletin of the American Meteorological Society, 79, 831-844.

[31]   Chylek, P. and Wong, J. (1995) Effect of Absorbing Aerosols on Global Radiation Budget. Geophysical Research Letters, 22, 929-931.

[32]   Segan, C. and Pollack, J. (1967) Anisotropic Non-Conservative Scattering and the Clouds of Venus. Journal of Geophysical Research, 72, 469-477.

[33]   Penner, J.E., Dickinson, R.E. and O’Neil, C.A. (1992) Effects of Aerosol from Biomass Burning on the Global Radiation Budget. Science, 256, 1432-1434.

[34]   Randles, C.A., Russell, L.M. and Ramaswamy, V. (2004) Hygroscopic and Optical Properties of Organic Sea Salt Aerosol and Consequences for Climate Forcing. Geophysical Research Letters, 31, Published Online.

[35]   Sjogren, S., Gysel, M., Weingartner, E., Baltensperger, U., Cubison, M.J., Coe, H., Zardini, A.A., Marcolli, C., Krieger, U.K. and Peter, T.( 2007) Hygroscopic Growth and Water Uptake Kinetics of Two-Phase Aerosol Particles Consisting of Ammonium Sulfate, Adipic and Humic acid Mixtures. Journal of Aerosol Science, 38, 157-171.

[36]   Stokes, R.H. and Robinson, R.A. (1966) Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria. The Journal of Physical Chemistry, 70, 2126-2130.

[37]   Meyer, N.K., Duplissy, J., Gysel, M., Metzger, A., Dommen, J., Weingartner, E., Alfarra, M.R., Prevot, A.S.H., Fletcher, C., Good, N., McFiggans, G., Jonsson, A.M., Hallquist, M., Baltensperger, U. and Ristovski, Z.D. (2009) Analysis of the Hygroscopic and Volatile Properties of Ammonium Sulphate Seeded and Unseeded SOA Particles. Atmospheric Chemistry and Physics, 9, 721-732.

[38]   Stock, M., Cheng, Y.F., Birmili, W., Massling, A., Wehner, B., Muller, T., Leinert, S., Kalivitis, N., Mihalopoulos, N. and Wiedensohler, A. (2011) Hygroscopic Properties of Atmospheric Aerosol Particles over the Eastern Mediterranean: Implications for Regional Direct Radiative Forcing under Clean and Polluted Conditions. Atmospheric Chemistry and Physics, 11, 4251-4271.

[39]   Duplissy J., DeCarlo, P.F., Dommen, J., Alfarra, M.R., Metzger, A., Barmpadimos, I., Prevot, A.S.H., Weingartner, E., Tritscher, T., Gysel, M., Aiken, A.C., Jimenez, J.L., Canagaratna, M.R., Worsnop, D.R., Collins, D.R., Tomlinson, J. and Baltensperger, U. (2011) Relating Hygroscopicity and Composition of Organic Aerosol Particulate Matter. Atmospheric Chemistry and Physics, 11, 1155-1165.

[40]   Meier, J., Wehner, B., Massling, A., Birmili, W., Nowak, A., Gnauk, T., Bruggemann, E., Herrmann, H., Min, H. and Wiedensohler, A. (2009) Hygroscopic Growth of Urban Aerosol Particles in Beijing (China) during Wintertime: A Comparison of Three Experimental Methods. Atmospheric Chemistry and Physics, 9, 6865-6880.

[41]   Tijjani, B.I. and Uba, S. (2013) The Effect of Hygroscopic Growth on Urban Aerosols. The International Institute for Science, Technology and Education (IISTE), 25, 58-75.

[42]   Tijjani, B.I. and Uba, S. (2013) The Effect of Hygroscopic Growth on Desert Aerosols. Advances in Applied Science Research, 4, 465-478.

[43]   Tijjani, B.I. (2013) The Effect of Soot and Water Soluble on the Hygroscopicity of Urban Aerosols. Advances in Physics Theories and Applications, 26, 52-72.

[44]   Tijjani, B.I. (2013) The Effect of Water Solubles on the Hygroscopicity of Urban Aerosols. International Journal of Computational Engineering Research (IJCER), 03, 45-60.

[45]   Tijjani, B.I., Aliyu, A. and Shuaibu, F. (2013) The Effect of Hygroscopic Growth on Continental Aerosols. Open Journal of Applied Sciences, 3, 381-392.

[46]   Sheridan, P.J., Delene, D.J. and Ogren, J.A. (2001) Four Years of Continuous Surface Aerosol Measurements from the Department of Energy’s Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbedsite. Journal of Geophysical Research: Atmospheres, 106, 20735-20747.

[47]   Sullivan, R.C., Moore, M.J.K., Petters, M.D., Kreidenweis, S.M., Roberts, G.C. and Prather, K.A. (2009) Effect of Chemical Mixing State on the Hygroscopicity and Cloud Nucleation Properties of Calcium Mineral Dust Particles. Atmospheric Chemistry and Physics, 9, 3303-3316.

[48]   Rose, D., Gunthe, S.S., Mikhailov, E., Frank, G.P., Dusek, U., Andreae, M.O. and Pöschl, U. (2008) Calibration and Measurement Uncertainties of a Continuous-Flow Cloud Condensation Nuclei Counter (DMT-CCNC): CCN Activation of Ammonium Sulfate and Sodium Chloride Aerosol Particles in Theory and Experiment. Atmospheric Chemistry and Physics, 8, 1153-1179.

[49]   Poschl, U., Rose, D. and Andreae, M.O. (2009) Climatologies of Cloud-Related Aerosols—Part 2: Particle Hygroscopicity and Cloud Condensation Nuclei Activity. In: Heintzenberg, J. and Charlson, R.J., Eds., Clouds in the Perturbed Climate System, MIT Press, Cambridge, 58-72.

[50]   Christensen, S.I. and Petters, M.D. (2012) The Role of Temperature in Cloud Droplet Activation. The Journal of Physical Chemistry A, 116, 9706-9717.

[51]   Niedermeier, D., Wex, H., Voigtländer, J., Stratmann, F., Bruggemann, E., Kiselev, A., Henk, H. and Heintzenberg, J. (2008) LACIS-Measurements and Parameterization of Sea-Salt Particle Hygroscopic Growth and Activation. Atmospheric Chemistry and Physics, 8, 579-590.

[52]   Petters, M.D., Wex, H., Carrico, C.M., Hallbauer, E., Massling, A., McMeeking, G.R., Poulain, L., Wu, Z., Kreidenweis, S.M. and Stratmann, F. (2009) Towards Closing the Gap between Hygroscopic Growth and Activation for Secondary Organic Aerosol: Part 2 Theoretical Approaches. Atmospheric Chemistry and Physics, 9, 3999-4009.

[53]   Liu P.F., Zhao, C.S., Gobel, T., Hallbauer, E., Nowak, A., Ran, L., Xu, W.Y., Deng, Z.Z., Ma, N., Mildenberger, K., Henning, S., Stratmann, F. and Wiedensohler, A. (2011) Hygroscopic Proper Ties of Aerosol Particles at High Relative Humidity and Their Diurnal Variations in the North China Plain. Atmospheric Chemistry Physics Discussion, 11, 2991-3040.

[54]   Swietlicki, E., Zhou, J.C., Covert, D.S., Hameri, K., Busch, B., Vakeva, M., Dusek, U., Berg, O.H., Wiedensohler, A., Aalto, P., Mäkelä, J., Martinsson, B.G., Papaspiropoulos, G., Mentes, B., Frank, G. and Stratmann, F. (2000) Hygroscopic Properties of Aerosol Particles in the North-Eastern Atlantic during ACE-2. Tellus B, 52, 201-227.

[55]   Birmili, W., Nowak, A., Schwirn, K., Lehmann, K., et al. (2004) A New Method to Accurately Relate Dry and Humidified Number Size Distributions of Atmospheric Aerosols. Journal of Aerosol Science, 1, 15-16.

[56]   Kasten, F. (1969) Visibility Forecast in the Phase of Pre-Condensation. Tellus A, 21, 631-635.

[57]   Gysel, M., McFiggans, G.B. and Coe, H. (2009) Inversion of Tandem Differential Mobility Analyser (TDMA) Measurements. Journal of Aerosol Science, 40, 134-151.

[58]   Putaud, J.P. (2012) Interactive Comment on “Aerosol Hygroscopicity at IspraEMEP-GAW Station” by M. Adam et al. Atmospheric Chemistry Physics Discussion, 12, C1316-C1322.

[59]   Jeong, M.J., Li, Z., Andrews, E. and Tsay, S.C. (2007) Effect of Aerosol Humidification on the Column Aerosol Optical Thickness over the Atmospheric Radiation Measurement Southern Great Plains Site. Journal of Geophysical Research: Atmospheres, 112, Published Online.

[60]   Doherty,S.J., Quinn, P.K., Jefferson, A., Carrico, C.M., Anderson, T.L. and Hegg, D. (2005) A Comparison and Summary of Aerosol Optical Properties as Observed in Situ from Aircraft, Ship, and Land during ACE-Asia. Journal of Geophysical Research: Atmospheres, 110, Published Online.

[61]   Quinn, P.K., Bates, T.S., Baynard, T., Clarke, A.D., Onasch, T.B., et al. (2005) Impact of Particulate Organic Matter on the Relative Humidity Dependence of Light Scattering: A Simplified Parameterization. Geophysical Research Letters, 32, Published Online.

[62]   Gassó, S., Hegg, D.A., Covert, D.S., Collins, D., Noone, K.J., et al. (2000) Influence of Humidity on the Aerosol Scattering Coefficient and Its Effect on the Upwelling Radiance during ACE-2. Tellus B, 52, 546-567.

[63]   Clarke, A., McNaughton, C., Kapustin, V., Shinozuka, Y., Howell, S., et al. (2007) Biomass Burning and Pollution Aerosol over North America: Organic Components and Their Influence on Spectral Optical Properties and Humidification Response. Journal of Geophysical Research: Atmospheres, 112, Published Online.

[64]   Hänel, G. (1976) The Properties of Atmospheric Aerosol Particles as Functions of Relative Humidity at Thermodynamic Equilibrium with Surrounding Moist Air. Advances in Geophysics, 19, 73-188.

[65]   Ångström, A. (1961) Techniques of Determining the Turbidity of the Atmosphere. Tellus A, 13, 214-223.

[66]   King, M.D. and Byrne, D.M. (1976) A Method for Inferring Total Ozone Content from Spectral Variation of Total Optical Depth Obtained with a Solar Radiometer. Journal of the Atmospheric Sciences, 33, 2242-2251.

[67]   Eck, T.F., Holben, B.N., Reid, J.S., Dubovic, O., Smirnov, A., O’Neil, N.T., Slutsker, I. and Kinne, S. (1999) Wavelength Dependence of the Optical Depth of Biomass Burning, Urban, and Desert Dust Aerosols. Journal of Geophysical Research: Atmospheres, 104, 31333-31349.

[68]   Eck, T.F., Holben, B.N., Dubovic, O., Smirnov, A., Slutsker, I., Lobert, J.M., and Ramanathan, V. (2001) Column-Integrated Aerosol Optical Properties over the Maldives during the Northeast Monsoon for 1998-2000. Journal of Geophysical Research: Atmospheres, 106, 28555-28566.

[69]   Eck, T.F., Holben, B.N., Ward, D.E., Dubovic, O., Reid, J.S., Smirnov, A., Mukelabai, M.M., Hsu, N.C., O’ Neil, N.T. and Slutsker, I. (2001) Characterization of the Optical Properties of Biomass Burning Aerosols in Zambia during the 1997 ZIBBEE Field Campaign. Journal of Geophysical Research: Atmospheres, 106, 3425-3448.

[70]   Kaufman, Y.J. (1993) Aerosol Optical Thickness and Atmospheric Path Radiance. Journal of Geophysical Research: Atmospheres, 98, 2677-2992.

[71]   O’Neill, N.T., Dubovic, O. and Eck, T.F. (2001) Modified Ångström Exponent for the Characterization of Submicrometer Aerosols. Applied Optics, 40, 2368-2375.

[72]   O’Neill, N.T., Eck, T.F., Smirnov, A., Holben, B.N. and Thulasiraman, S. (2003) Spectral Discrimination of Coarse and Fine Mode Optical Depth. Journal of Geophysical Research: Atmospheres, 198, Published Online.

[73]   Pedros, R., Martinez-Lozano, J.A., Utrillas, M.P., Gómez-Amo, J.L. and Tena, F. (2003) Column-Integrated Aerosol, Optical Properties from Ground-Based Spectro-Radiometer Measurements at Barrax (Spain) during the Digital Airborne Imaging Spectrometer Experiment (DAISEX) Campaigns. Journal of Geophysical Research: Atmospheres, 108, Published Online.

[74]   Kaskaoutis, D.G. and Kambezidis, H.D. (2006) Investigation into the Wavelength Dependence of the Aerosol Optical Depth in the Athens Area. Quarterly Journal of the Royal Meteorological Society, 132, 2217-2234.

[75]   Schmid, B., Hegg, D.A., Wang, J., Bates, D., Redemann, J., Russell, P.B., Livingston, J.M., Jonsson, H.H., Welton, E.J., Seinfeld, J.H., Flagan, R.C., Covert, D.S., Dubovik, O. and Jefferson, A. (2003) Column Closure Studies of Lower Tropospheric Aerosol and Water Vapor during ACE-Asia Using Airborne Sun Photometer and Airborne in Situ and Ship-Based Lidar Measurements. Journal of Geophysical Research: Atmospheres, 108, Published Online.

[76]   Martinez-Lozano, J.A., Utrillas, M.P., Tena, F., Pedros, R., Canada, J., Bosca, J.V. and Lorente, J. (2001) Aerosol Optical Characteristics from Summer Campaign in an Urban Coastal Mediterranean Area. IEEE Transactions on Geoscience and Remote Sensing, 39, 1573-1585.

[77]   Aspens, D.E. (1982) Local-Field Effect and Effective Medium Theory: A Microscopic Perspective. American Association of Physics Teachers, 50, 704-709.

[78]   Heller, W. (1945) The Determination of Refractive Index of Colloidal Particles by Means of a New Mixture Rule or from Measurements of Light Scattering. Physical Review, 68, 5-10.

[79]   Wang, J. and Martin S.T. (2007) Satellite Characterization of Urban Aerosols: Importance of Including Hygroscopicity and Mixing State in the Retrieval Algorithms. Journal of Geophysical Research: Atmospheres, 112, Published Online.

[80]   Shettle, E.P. and Fenn, R.W. (1979) Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties. Rep. No. AFGL-TR-79-0214, ERP No. 676, Air Force Geophys. Lab., Optical Phys. Div., Hanscom Air Force Base, Mass.

[81]   d’Almeida, G.A., Koepke, P. and Shettle, E.P. (1991) Atmospheric Aerosols: Global Climatology and Radiative Characteristics. A. Deepak, Hampton, 561 pp.

[82]   Lorentz, H.A. (1880) Ueber die Beziehungzwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Annalen der Physik, 245, 641-665.

[83]   Lorenz, L. (1880) Ueber die Refractionconstante. Annual Review of Physical Chemistry, 11, 70-103.

[84]   Schuster, G.L., Dubovik, O. and Holben, B.N. (2006) Angstrom Exponent and Bimodal Aerosol Size Distributions. Journal of Geophysical Research: Atmospheres, 111, Published Online.

[85]   Whitby, K. (1978) The Physical Characteristics of Sulfur Aerosols. Atmospheric Environment, 12, 135-159.

[86]   Seinfeld, J.H. and Pandis, S.N. (1998) Atmospheric Chemistry and Physics. Wiley-Inter-Science Publication, Hoboken.

[87]   Fitzgerald, J.W. (1975) Approximation Formulas for the Equilibrium Size of an Aerosol Particle as a Function of Its Dry Size and Composition and Ambient Relative Humidity. Journal of Applied Meteorology, 14, 1044-1049

[88]   Tang, I.N. (1996) Chemical and Size Effects of Hygroscopic Aerosols on Light Scattering Coefficients. Journal of Geophysical Research: Atmospheres, 101, 19245-19250.

[89]   Liou, K.N. (2002) An Introduction to Atmospheric Radiation. Elsevier, New York, 583 p.