JBiSE  Vol.4 No.4 , April 2011
Immobilization of antibodies on the self-assembled monolayer by antigen-binding site protection and immobilization kinetic control
ABSTRACT
The orientation of the biological molecule immobi-lized on a solid surface has been critical in devel-opment of various applications. In this study, ori-entation of antibody was retained by protecting the antigen-binding site of the antibody prior to immo-bilization to -functionalized mixed self-assembled monolayer (SAM) of 12-mercaptododecanoic acid and 1-heptanethiol. More importantly, the number of immobilization bonds formed between each an-tigen-binding site protected antibody molecule and the solid surface was controlled by optimizing the mole fraction of the activated carboxyl group of the linker molecules in the mixed SAM. The amount of antibody used in this study was approximately equivalent to the amount for one monolayer surface coverage. The resulting activity of protected immo-bilized antibody was about 10 fold higher than that of random immobilized antibody

Cite this paper
nullYoon, M. , Hwang, H. and Kim, J. (2011) Immobilization of antibodies on the self-assembled monolayer by antigen-binding site protection and immobilization kinetic control. Journal of Biomedical Science and Engineering, 4, 242-247. doi: 10.4236/jbise.2011.44033.
References
[1]   Zhen, G., Eggli, V., V?r?s, J., Zammaretti, P., Textor, M., Glockshuber, R. and Kuennemann, E. (2004) Immobilization of the enzyme beta-lactamase on biotin- derivatized poly(L-lysine)-g-poly(ethylene glycol)-coated sensor chips: a study on oriented attachment and surface activity by enzyme kinetics and in situ optical sensing. Langmuir, 20, 10464-10473. doi:10.1021/la0482812

[2]   Browning-Kelly, M.E., Wadu-Mesthrige, K., Hari, V. and Liu, G.Y. (1997) Atomic force microscopic study of specific antigen/antibody binding. Langmuir, 13, 343-350. doi:10.1021/la960918x

[3]   Torrance, L., Ziegler, A., Pittman, H., Paterson, M., Toth, R. and Eagleston, I. (2006) Oriented immobilization of engineered single-chain antibodies to develop biosensors for virus detection. Journal of Virological Methods, 134, 164-170. doi:10.1016/j.jviromet.2005.12.012

[4]   López-Gallego, F., Betancor, L., Mateo, C., Hidalgo, A., Alonso-Morales, N., Dellamora-Oritz, G., Guisan, J.M. and Fernandez-Lafuente, R. (2005) Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on animated supports. Journal of Biotechnology, 119, 70-75. doi:10.1016/j.jbiotec.2005.05.021

[5]   Lu, B., Xie, J., Lu, C., Wu, C. and Wei, Y. (1995) Oriented immobilization of Fab’ fragments on silica surfaces. Analytical Chemistry, 67, 83-87. doi:10.1021/ac00097a014

[6]   Zhao, X., Nampalli, S., Serino, A.J. and Kumar, S. (2001) Immobilization of oligonucleotides with multiple anchors to microchips. Nucleic Acids Research, 29, 955-959. doi:10.1093/nar/29.4.955

[7]   Markoglou, N. and Wainer, I.W. (2001) Synthesis and characterization of an immobilized phenylethanolamine N-methyltransferase liquid chromatographic stationary phase. Analytical Biochemistry, 288, 83-88. doi:10.1006/abio.2000.4884

[8]   White, K.P., Rifkin, S.A., Hurban, P. and Hogness, D.S. (1999) Microarray analysis of drosophila development during metamorphosis. Science, 286, 2179-2184. doi:10.1126/science.286.5447.2179

[9]   Ward, K. (2006) Microarray technology in obstetrics and gynecology: A guide for clinicians. American Journal of Obstetrics and Gynecology, 195, 364-372. doi:10.1016/j.ajog.2005.12.014

[10]   Roy, S. and Sen, C.K. (2006) cDNA microarray screening in food safety. Toxicology, 221, 128-133. doi:10.1016/j.tox.2005.12.025

[11]   Lettieri, T. (2006) Recent application of DNA microarray technology to toxicology and ectoxicology. Environmental Health Perspectives, 114, 4-9.

[12]   Giacomelli, C.E., Vermeer, A.W.P. and Norde, W. (2000) Adsorption of immunoglobulin G on core-shell latex particles precoated with chaps. Journal of Colloid and Interface Science, 231, 283-288. doi:10.1006/jcis.2000.7159

[13]   Charelier, R.C., Gengenbach T.R., Griesser, H.J., Brigham-Burke, M. and O’Shannessy, D.J. (1995) A general method to recondition and reuse BIAcore sensor chips fouled with covalently immobilized protein/peptide. Analytical Biochemistry, 229, 112-118. doi:10.1006/abio.1995.1386

[14]   Charles, P.T., Goldman E.R., Rangasammy, J.G., schauer C.L., Chen, M.S. and Taitt, C.R. (2004) Fabrication and characterization of 3D hydrogel microarrays to measure antigenicity and antibody functionality for biosensor application. Biosensors and Bioelectronics, 20, 753-764. doi:10.1016/j.bios.2004.04.007

[15]   Bonroy, K., Frederix, F., Reekmans, G., Dewolf, E., De Palma, R., Borghs, G., Declerck, P. and Goddeeris, B. (2006) Comparison of random and oriented immobilization of antibody fragments on mixed self-assembled monolayers. Journal of Immunological Methods, 312, 167-181. doi:10.1016/j.jim.2006.03.007

[16]   Tanaka, G., Funabashi, H., Mie, M. and Kobatake, E. (2006) Fabrication of an antibody microwell array with self-adhering antibody binding protein. Analytical Biochemistry, 350, 298-303. doi:10.1016/j.ab.2005.12.034

[17]   Ha, T.H., Jung, S.O., Lee, J.M., Lee, K.Y., Lee, Y., Park, J.S. and Chung, B.H. (2007) Oriented immobilization of antibodies with GST-fused multiple Fc-specific B-domains on a gold surface. Analytical Chemistry, 79, 546-556. doi:10.1021/ac061639+

[18]   Lo, Y.S., Nam, D.H., So, H.M., Chang, H., Kim, J.J., Kim Y.H. and Lee, J.O. (2009) Oriented-immobilization of antibody fragments in Ni-decorated single-walled carbon nanotube devices. ACS Nano., 3, 3649-3655. doi:10.1021/nn900540a

[19]   Liu, F., Dubey, M., Takahashi, H., Castner, D.G. and Grainer, D.W. (2010) Immobilized antibody orientation analysis using secondary ion mass spectrometry and fluorescence imaging of affinity-generated pattern. Analytical Chemistry, 82, 2947-2958. doi:10.1021/ac902964q

[20]   Mouri, M., Ikawa, T., Narita, M., Hoshino, F. and Watanabe, O. (2010) Orientation control of photo-immobilized antibodies on the surface of azobnzene-containing polymers by the introduction of functional groups. Micromolecular Bioscience, 10, 612-620.

[21]   Ulman, A. (1996) Formation and structure of self-assembled monolayers. Chemical Reviews, 96, 1533-1554. doi:10.1021/cr9502357

[22]   Prime, K.L. and Whitesides, G.M. (1991) Self-assembled organic monolayers: Model system for studying adsorption of proteins at surfaces. Science, 252, 1164-1167. doi:10.1126/science.252.5009.1164

[23]   Grebarek, Z. and Gergely, J. (1990) Zero-length cross- linking procedure with the use of active esters. Analytical Biochemistry, 185, 131-135. doi:10.1016/0003-2697(90)90267-D

[24]   Mittler-Neher, S., Spinke, J., Liley, M., Nelles, G., Weisser, M., Back, R., Wenz, G. and Knoll, W. (1995) Spectroscopic and surface-analytical characterization of self-assembled layers on Au. Biosensors and Bioelectronics, 10, 903-916. doi:10.1016/0956-5663(95)99228-D

[25]   Alves, C.A., Smith, E.L. and Porter M.D. (1992) Atomic scale imaging of alkanethiolate monolayers at gold surfaces with atomic force microscopy. Journal of the American Chemical Society, 114, 1222-1227. doi:10.1021/ja00030a015

 
 
Top