JSEMAT  Vol.4 No.4 , July 2014
Modification of Steel Surface Using the Laser Energy Olga Chudina
Abstract: The article is devoted to surface hardening of steels by alloying with the use of laser energy. Two combined technologies were proposed: first—laser alloying by nitride-forming elements followed by nitriding, and second—the local laser alloying followed by metallization in atmosphere of ammonia. It is shown that laser alloying in continuous radiation forms a layer with a homogeneous fine-grained structure with thickness of 600 microns. The subsequent nitriding increases the microhardness of the surface layer of low-carbon steels to 20,000 MPa, increases wear-resistance in a 3 - 15 times and crack resistance in a 1.5 times. Two-stage technology of metallization allows getting diffusion layer on the surface of steels with the thickness, which is 1.5 - 2 times higher than after traditional metallization. In addition, this method of surface modification can significantly reduce the temperature of diffusion metallization and reduce the processing time to 3 hours. The optimal regimes of both technologies, which provide homogeneous multiphase diffusion layers with high hardness and wear resistance, were determined.
Cite this paper: Chudina, O. (2014) Modification of Steel Surface Using the Laser Energy Olga Chudina. Journal of Surface Engineered Materials and Advanced Technology, 4, 181-188. doi: 10.4236/jsemat.2014.44021.

[1]   Rykalin, N.N., Uglov, A.A., Zuev, I.V. and Kokora, A.N. (1985) Laser and Electron Beam Treatment of Materials: Handbook. Mashinostroenie, Moscow, 496.

[2]   Chudina, O.V. and Brezhnev, A.A. (2010) Surface Alloying of Carbon Steels by Laser Heating. Strengthening Technologies and Coatings, No. 4, 10-16.

[3]   Solind, A., De Sanctis, M., Paganini, L., et al. (1984) Origin and Development of Residual Stresses Induced by Laser Surface-Hardening Treatments. Journal of Heat Treating, 3, 193-204.

[4]   Grigoryan, A.G., Safonov, A.N., Mayorov, V.S., Baskov, A.F. and Ivashov, G.P. (1987) Distribution of Residual Stresses on the Surface of Steel Hardened by Continuous CO2 Laser. Metallovedenie i Termicheskaya Obrabotka Metallov, 9, 45-49.

[5]   Brover, A.V. (2005) Effect of Surface Heat Treatment Using of Concentrated Energy Flows on the Structural Strength of Steel. Strengthening Technology and Coatings, 4, 22-25.