The SABR Model: Explicit Formulae of the Moments of the Forward Prices/Rates Variable and Series Expansions of the Transition Probability Density and of the Option Prices

Show more

References

[1] Hagan, P.S., Kumar, D., Lesniewski, A.S. and Woodward, D.E. (2002) Managing Smile Risk. Wilmott Magazine, September, 84-108. http://www.wilmott.com/pdfs/021118_smile.pdf

[2] Chen, B., Oosterlee, C.W. and van Weeren, S. (2010) Analytical Approximation to Constant Maturity Swap Convexity Corrections in a Multi-Factor SABR Model. International Journal of Theoretical and Applied Finance, 13, 1019-1046.

http://dx.doi.org/10.1142/S0219024910006091

[3] Doust, P. (2012) No-Arbitrage SABR. The Journal of Computational Finance, 15, 3-31.

[4] Fatone, L., Mariani, F., Recchioni, M.C. and Zirilli, F. (2013) Some Explicitly Solvable SABR and Multiscale SABR Models: Option Pricing and Calibration. Journal of Mathematical Finance, 3, 10-32.

http://dx.doi.org/10.4236/jmf.2013.31002

[5] Fatone, L., Mariani, F., Recchioni, M.C. and Zirilli, F. (2013) The Use of Statistical Tests to Calibrate the Normal SABR Model. Journal of Inverse and Ill-Posed Problems, 21, 59-84. http://dx.doi.org/10.1515/jip-2012-0093

[6] Fatone, L., Mariani, F., Recchioni, M.C. and Zirilli, F. (2013) Closed Form Moment Formulae for the Lognormal SABR Model Variables and Application to Calibration Problems. Open Journal of Applied Sciences, 3, 345-359.

http://dx.doi.org/10.4236/ojapps.2013.36045

[7] Forde, M. (2011) Exact Pricing and Large-Time Asymptotics for the Modified SABR Model and the Brownian Exponential Functional. International Journal of Theoretical and Applied Finance, 14, 559-578.

http://dx.doi.org/10.1142/S0219024911006735

[8] Hagan, P.S., Lesniewski, A.S. and Woodward, D.E. (2005) Probability Distribution in the SABR Model of Stochastic Volatility. http://lesniewski.us/papers/working/ProbDistrForSABR.eps

[9] Islah, O. (2009) Solving SABR in Exact Form and Unifying It with LIBOR Market Model.

http://papers.ssrn.com/sol3/papers.cfm abstract id=1489428

http://dx.doi.org/10.2139/ssrn.1489428

[10] Andersen, L. and Andreasen, J. (2002) Volatile Volatilities. Risk, 15, 163-168.

[11] Andersen, L. and Piterbarg, V.V. (2007) Moment Explosions in Stochastic Volatility Models. Finance and Stochastics, 11, 29-50. http://dx.doi.org/10.1007/s00780-006-0011-7

[12] West, G. (2005) Calibration of the SABR Model in Illiquid Markets. Applied Mathematical Finance, 12, 371-385.

http://dx.doi.org/10.1080/13504860500148672

[13] Johnson, S. and Nonas, B. (2009) Arbitrage-Free Construction of the Swaption Cube.

http://papers.ssrn.com/sol3/papers.cfm abstract id=1330869

[14] Obloj, J. (2008) Fine-Tune Your Smile: Correction to Hagan et al. http://arxiv.org/abs/0708.0998

[15] Forde, M. and Pogudin, A. (2013) The Large-Maturity Smile for the SABR and CEV-Heston Models. International Journal of Theoretical and Applied Finance, 16, Article ID: 1350047-1-1350047-20.

[16] Wu, Q. (2012) Series Expansion of the SABR Joint Density. Mathematical Finance, 22, 310-345.

http://dx.doi.org/10.1111/j.1467-9965.2010.00460.x

[17] Antonov, A. and Spector, M. (2012) Advanced Analytics for the SABR Model.

http://papers.ssrn.com/sol3/papers.cfm abstract id=2026350

[18] Yakubovich, S.B. (2011) The Heat Kernel and Heisenberg Inequalities Related to the Kontorovich-Lebedev Transform. Communications on Pure and Applied Analysis, 10, 745-760. http://dx.doi.org/10.3934/cpaa.2011.10.745

[19] Yakubovich, S.B. (2009) Beurling’s Theorems and Inversion Formulas for Certain Index Transforms. Opuscula Mathematica, 29, 93-110.

[20] Ishiyama, K. (2005) Methods for Evaluating Density Functions of Exponential Functions Represented as Integrals of Geometric Brownian Motion. Methodology and Computing in Applied Probability, 7, 271-283.

http://dx.doi.org/10.1007/s11009-005-4517-9

[21] Abramowitz, M. and Stegun, I.A. (1970) Handbook of Mathematical Functions. Dover, New York.

[22] Arfken, G.B. and Weber, H.J. (2005) Mathematical Methods for Physicists. 6th Edition, Academic Press, San Diego.

[23] Szmytkowski, R. and Bielski, S. (2010) Comment on the Orthogonality of the Macdonald Functions of Imaginary Order. Journal of Mathematical Analysis and Applications, 365, 195-197. http://dx.doi.org/10.1016/j.jmaa.2009.10.035

[24] Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G. (1954) Tables of Integral Transforms. Vol. 1, McGrawHill Book Company, New York.

[25] Bjrk, T. and Landén, C. (2002) On the Term Structure of Futures and Forward Prices. In: Geman, H., Madan, D., Pliska, S. and Vorst, T., Eds., Mathematical Finance—Bachelier Congress 2000, Springer Verlag, Berlin, 111-150.

http://dx.doi.org/10.1007/978-3-662-12429-1_7

[26] Glasser, M.L. and Montaldi, E. (1994) Some Integrals Involving Bessel Functions. Journal of Mathematical Analysis and Applications, 183, 577-590. http://dx.doi.org/10.1006/jmaa.1994.1164

[27] Fatone, L., Mariani, F., Recchioni, M.C. and Zirilli, F. (2009) An Explicitly Solvable Multi-Scale Stochastic Volatility Model: Option Pricing and Calibration. Journal of Futures Markets, 29, 862-893.

http://dx.doi.org/10.1002/fut.20390