GEP  Vol.2 No.3 , June 2014
On the Application of Probabilistic Hydrometeorological Simulation of Soil Moisture across Different Stations in India
Abstract

An application of a proposed hydrometeorological approach for probabilistic simulation of soil moisture is carried out. The time series of in-situ soil moisture and meteorological variables at monthly scale from a few monitoring stations having different soil-hydrologic properties across India are utilized. Preliminary investigation with both precipitation and near-surface air-tempera- ture as meteorological variables to establish that the strength of association between soil moisture and precipitation is more significant as compared to that between soil moisture and temperature. Precipitation-based probabilistic estimation of soil moisture using the proposed hydrometeorological approach is tested with in-situ observed soil moisture, CPC model output and with soil moisture data of the Climate Change Initiative (CCI) project. The parameter of the developed model is linked to the soil-hydrologic characteristics through Hydrologic Soil Group (HSG) classification. Higher values of model parameter (dependence parameter (θ) for the selected copula) correspond to HSG A and B having higher soil porosity, whereas, lower values correspond to HSG B and C having lower soil porosity.


Cite this paper
Das, S. and Maity, R. (2014) On the Application of Probabilistic Hydrometeorological Simulation of Soil Moisture across Different Stations in India. Journal of Geoscience and Environment Protection, 2, 159-169. doi: 10.4236/gep.2014.23021.
References

[1]   Albergel, C., Dorigo, W., Balsamo, G., Mu?oz-Sabater, J., de Rosnay, P., Isaksen et al. (2013a). Monitoring Multi-Decadal Satellite Earth Observation of Soil Moisture Products through Land Surface Reanalyses. Remote Sensing of Environment, in press.

[2]   Albergel, C., Brocca, L., Wagner, W., De Rosnay, P., & Calvet, J.-C. (2013b). Selection of Performance Metrics for Global Soil Moisture Products: The Case for the ASCAT Soil Moisture Product. In: G. P. Petropoulos (Ed.), Remote Sensing of Energy Fluxes and Soil Moisture Content (pp. 427-444). CRC Press.

[3]   Bormann, H. (2012). Assessing the Soil Texture-Specific Sensitivity of Simulated Soil Moisture to Projected Climate Change by SVAT Modelling. Geoderma, 185-186, 73-83. http://dx.doi.org/10.1016/j.geoderma.2012.03.021

[4]   Central Ground Water Board (CGWB) (2007). Manual on Artificial Recharge of Groundwater. Ministry of Water Resources, Government of India, Farida-bad.

[5]   Chowdhary, H., Escobar, L. A., & Singh, V. P. (2011). Identification of Suitable Copulas for Bivariate Frequency Analysis of Flood Peak and Flood Volume Data. Hydrology Research, 42, 193-216. http://dx.doi.org/10.2166/nh.2011.065

[6]   Das, S. K., & Maity, R. (2013), Probabilistic Simulation of Surface Soil Moisture using Hydrometeorological Inputs. ISH Journal of Hydraulic Engineering, 19, 227-234. http://dx.doi.org/10.1080/09715010.2013.798907

[7]   Dripps, W. R., & Bradbury, K. R. (2007). A Simple Daily Soil-Water Balance Model for Estimating the Spatial and Temporal Distribution of Groundwater Recharge in Temperate Humid Areas. Hydrogeology Journal, 15, 433-444. http://dx.doi.org/10.1007/s10040-007-0160-6

[8]   Drusch, M. (2007). Initializing Numerical Weather Prediction Models with Satellite-Derived Surface Soil Moisture: Data Assimilation Experiments with ECMWF’s Integrated Forecast System and the TMI Soil Moisture Data Set. Journal of Geophysical Research, 112, D03102. http://dx.doi.org/10.1029/2006JD007478

[9]   Ek, M. B., & Holtslag, A. A. M. (2004). Influence of Soil Moisture on Boundary Layer Cloud Development. Journal of Hydrometeorology, 5, 86-99. http://dx.doi.org/10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2

[10]   Entekhabi, D., Rodriguez-Iturbe, I., and Castelli, F. (1996). Mutual Interaction of Soil Moisture State and Atmospheric Processes. Journal of Hydrology, 184, 3-17. http://dx.doi.org/10.1016/0022-1694(95)02965-6

[11]   Fan, Y., & van den Dool, H. (2004). Climate Prediction Center Global Monthly Soil Moisture Data Set at 0.5 Resolution for 1948 to Present. Journal of Geophysical Research, 109, D10102. http://dx.doi.org/10.1029/2003JD004345

[12]   Gaur, N., & Mohanty, B. P. (2013). Evolution of Physical Controls for Soil Moisture in Humid and Subhumid Watersheds. Water Research, 49, 1244-1258. http://dx.doi.org/10.1002/wrcr.20069

[13]   GCOS (2010). Global Climate Observing System (GCOS). Implementation Plan for the Global Climate Observing System in Support of the UNFCCC (2010 Update), GCOS-138. UNEP and Intl. Council for Science.

[14]   Genest, C., Remillard, B., & Beaudoin, D. (2009). Goodness-of-Fit Tests for Copulas: A Review and a Power Study. Insurance: Mathematics and Economics, 44, 199. http://dx.doi.org/10.1016/j.insmatheco.2007.10.005

[15]   Huang, J, van den Dool, H. M., & Georgakakos, K. P. (1996). Analysis of Model Calculated Soil Moisture over the United States (1931-1993) and Applications to Long Range Temper-ature Forecasts. J. of Cli., 9, 1351-1362. http://dx.doi.org/10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2

[16]   Kao, S. C., & Govindraju, S. C. (2008). Trivariate Statistical Analysis of Extreme Rainfall Events via the Plackett Family of Copulas. Water Resources Research, 44, W02415. http://dx.doi.org/10.1029/2007WR006261

[17]   Kendall, M. G. (1962). Rank Correlation Methods (4th ed.). London: Griffin.

[18]   Maity, R., & Kashid S. S. (2011), Importance Analysis of Local and Global Climate Inputs for Ba-sin-Scale Streamflow Prediction. Water Resources Research, 47, W11504. http://dx.doi.org/10.1029/2010WR009742

[19]   Maity, R., & Nagesh Kumar, D. (2008). Probabilistic Prediction of Hy-droclimatic Variables with Nonparametric Quantification of Uncertainty. Journal of Geophysical Research, 113, D14105, 12.

[20]   Nelsen, R. B. (2006). An Introduction to Copulas (2nd ed.). New York: Springer, 269.

[21]   Oyedele, D. J., & Tijani, F. O. (2010). Spatial and Temporal Variability of Soil Water Content. International Agrophysics, 24, 171-176.

[22]   Panareda, A. A., Balsamo, G., & Beljaars, A. (2010). Impact of Improved Soil Moisture on the ECMWF Precipitation Forecast in West Africa. Geophysical Research Letters, 37, L20808.

[23]   Pandey, V., & Pandey, P. K. (2010). Spatial and Temporal Variability of Soil Moisture. International Journal of Geosciences, 1, 87-98. http://dx.doi.org/10.4236/ijg.2010.12012

[24]   Porporato, A., Daly, E., & Rodriguez-Iturbe, I. (2004). Soil Water Balance and Ecosystem Response to Climate Change. The American Naturalist, 164, 625-632. http://dx.doi.org/10.1086/424970

[25]   Rodriguez-Iturbe, I., Porporato, A., Liao, F., & Ridolfi L. (2001). Plants in Wa-ter-Controlled Ecosystem: Active Role in Hydrologic Process and Response to Water Stress, I. Scope and general outline. Advances in Water Resources, 24, 695-705. http://dx.doi.org/10.1016/S0309-1708(01)00004-5

[26]   Rosenbaum, U., Bogena, H. R., Huisman, J. A., Peterson, T. J., Weuthen, A., Western, A. W., & Vereecken, H. (2012). Seasonal and Event Dynamics of Spatial Soil Moisture Patterns at the Small Catchment Scale. Water Resources Research, 48, W10544. http://dx.doi.org/10.1029/2011WR011518

[27]   Schmidt, T. (2006). Coping with Copulas in “Copulas: From Theory to Applications in Finance”. London: Risk Books.

[28]   Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., & Teuling, A. J. (2010). Investigating Soil Moisture–Climate Interactions in a Changing Climate: A Review. Earth Science Reviews, 99, 125-161. http://dx.doi.org/10.1016/j.earscirev.2010.02.004

[29]   USDA (2009). Chapter 7 Hydrologic Soil Groups, Part 630 Hy-drology, National Engineering Handbook. National Resources Conservation Service, United States Department of Agri-culture. 210-VI-NEH.

[30]   Willmott, C. J., Robesonb, S. M., & Matsuuraa, K. (2012). Short Communication: A Refined Index of Model Performance. Intl. Journal of Climate.

 
 
Top