Another Way of the Continuous Linkup of Neutron-Star-Body and Surrounding Empty-Space Metrics

Author(s)
Luboš Neslušan

ABSTRACT

The metrics of the compact objects should be the continuous function of coordinates. The metrics inside every object is set by its internal structure. The metrics in the adjacent empty space is described by the outer Schwarzschild or Kerr solution of the Einstein field equations. It appears that the linkup of both object-interior and empty-space metrics is not continuous at the physical surfaces of the objects for the common, generally (by convention) accepted set of assumptions. We suggest the new way of how to achieve the success in the linkup, which does not assume the higher value of the relativistic speed limit in the empty space governed by the object, in contrast to our previous suggestion. We also give a more detailed explanation of the existence of inner physical surface of compact objects and suggest the way of the linkup of metrics in this surface. To achieve the continuous linkup, we assume a lower value of the speed limit in the object’s interior as well as a new gauging of the outer Schwarzschild solution for the inner empty space of the object. Newly established gauging constants are calculated and the success of the linkup is shown in several examples. The new gauging implies a lower gravitational attraction (lower gravitational constant) in the inner empty space in comparison with that in the outer space, which is measured in the common, observed, gravitational interactions of material objects.

KEYWORDS

Gravitation, Classical General Relativity, Neutron Star, Tolman-Oppenheimer-Volkoff Problem

Gravitation, Classical General Relativity, Neutron Star, Tolman-Oppenheimer-Volkoff Problem

Cite this paper

Neslušan, L. (2014) Another Way of the Continuous Linkup of Neutron-Star-Body and Surrounding Empty-Space Metrics.*International Journal of Astronomy and Astrophysics*, **4**, 399-413. doi: 10.4236/ijaa.2014.42035.

Neslušan, L. (2014) Another Way of the Continuous Linkup of Neutron-Star-Body and Surrounding Empty-Space Metrics.

References

[1] Oppenheimer, J.R. and Volkoff, G.M. (1939) On Massive Neutron Cores. Physical Review, 55, 374-381. http://dx.doi.org/10.1103/PhysRev.55.374

[2] Ni, J. (2011) Solutions without a Maximum Mass Limit of the General Relativistic Field Equations for Neutron Stars. Science China, Physics, Mechanics, and Astronomy, 54, 1304-1308.

http://dx.doi.org/10.1007/s11433-011-4350-9

[3] Fiziev, P.P. (2004) Novel Geometrical Models of Relativistic Stars. I. The General Scheme. arXiv:astro-ph/0409456.

[4] Fiziev, P.P. (2004) Novel Geometrical Models of Relativistic Stars. II. Incompressible Stars and Heavy Black Dwarfs. arXiv:astro-ph/0409458.

[5] Neslu?an, L. (2014) Non-Trivial Linkup of Both Compact-Neutron-Object and Outer-Empty-Space Metrics. International Journal of Astronomy and Astrophysics, 4, 1-10.

[6] Schwarzschild, K. (1916) über das Gravitationsfeld eines Massenpunktes nach der Einstein’schen Theorie. Sitzungsberichte der K?niglich Preussischen Akademie der Wissenschaften zu Berlin, Phys.-Math. Klasse, 1, 189-196.

[7] Einstein, A. (1915) Die Feldgleichungun der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 1915, 844-847.

[8] Einstein, A. (1916) Die Grundlage der allgemeinen Relativit?tstheorie. Annalen der Physik, 354, 769-822. http://dx.doi.org/10.1002/andp.19163540702

[9] Chandrasekhar, S. (1935) The Highly Collapsed Configurations of a Stellar Mass (Second Paper). Monthly Notices of the Royal Astronomical Society, 95, 207-225.

[10] Shapiro, S.L. and Teukolsky, S.A. (1983) Black Holes, White Dwarfs, and Neutron Stars. The Physics of Compact Objects. John Wiley and Sons, New York. http://dx.doi.org/10.1002/9783527617661

[11] Tolman, R.C. (1969) Relativity, Thermodynamics, and Cosmology. Clarendon Press, Oxford.

[1] Oppenheimer, J.R. and Volkoff, G.M. (1939) On Massive Neutron Cores. Physical Review, 55, 374-381. http://dx.doi.org/10.1103/PhysRev.55.374

[2] Ni, J. (2011) Solutions without a Maximum Mass Limit of the General Relativistic Field Equations for Neutron Stars. Science China, Physics, Mechanics, and Astronomy, 54, 1304-1308.

http://dx.doi.org/10.1007/s11433-011-4350-9

[3] Fiziev, P.P. (2004) Novel Geometrical Models of Relativistic Stars. I. The General Scheme. arXiv:astro-ph/0409456.

[4] Fiziev, P.P. (2004) Novel Geometrical Models of Relativistic Stars. II. Incompressible Stars and Heavy Black Dwarfs. arXiv:astro-ph/0409458.

[5] Neslu?an, L. (2014) Non-Trivial Linkup of Both Compact-Neutron-Object and Outer-Empty-Space Metrics. International Journal of Astronomy and Astrophysics, 4, 1-10.

[6] Schwarzschild, K. (1916) über das Gravitationsfeld eines Massenpunktes nach der Einstein’schen Theorie. Sitzungsberichte der K?niglich Preussischen Akademie der Wissenschaften zu Berlin, Phys.-Math. Klasse, 1, 189-196.

[7] Einstein, A. (1915) Die Feldgleichungun der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin, 1915, 844-847.

[8] Einstein, A. (1916) Die Grundlage der allgemeinen Relativit?tstheorie. Annalen der Physik, 354, 769-822. http://dx.doi.org/10.1002/andp.19163540702

[9] Chandrasekhar, S. (1935) The Highly Collapsed Configurations of a Stellar Mass (Second Paper). Monthly Notices of the Royal Astronomical Society, 95, 207-225.

[10] Shapiro, S.L. and Teukolsky, S.A. (1983) Black Holes, White Dwarfs, and Neutron Stars. The Physics of Compact Objects. John Wiley and Sons, New York. http://dx.doi.org/10.1002/9783527617661

[11] Tolman, R.C. (1969) Relativity, Thermodynamics, and Cosmology. Clarendon Press, Oxford.