[1] Raymond, A.S. and Gissen A.J. (1987) Mechanisms of Differential Nerve Block. In Strichartz, G.R., Ed., Local Anesthetics, Springer-Verlag, Heidelberg, New York, 95-164.
http://dx.doi.org/10.1007/978-3-642-71110-7_4
[2] Fernandes, E.S., Fernandes, M.A. and Keeble, J.E. (2012) The Functions of TRPA1 and TRPV1: Moving away from Sensory Nerves. British Journal of Pharmacology, 166, 510-521.
http://dx.doi.org/10.1111/j.1476-5381.2012.01851.x
[3] Chen, Y., Willcockson, H.H. and Valtschanoff, J.G. (2009) Influence of the Vanilloid Receptor TRPV1 on the Activation of Spinal Glia in Mouse Models of Pain. Experimental Neurology, 220, 383-390.
http://dx.doi.org/10.1016/j.expneurol.2009.09.030
[4] Binshtok, A.M., Bean, B.P. and Woolf, C.J. (2007) Inhibition of Nociceptors by TRPV1-Mediated Entry of Impermeant Sodium Channel Blockers. Nature, 449, 607-610.
http://dx.doi.org/10.1038/nature06191
[5] Gerner, P., Binshtok, A.M., Wang, C.F., Hevelone, N.D., Bean, B.P., Woolf, C.J. and Wang, G.K. (2008) Capsaicin Combined with Local Anesthetics Preferentially Prolongs Sensory/Nociceptive Block in Rat Sciatic Nerve. Anesthesiology, 109, 872-878.
http://dx.doi.org/10.1097/ALN.0b013e31818958f7
[6] Shen J., Fox, L.E. and Cheng, J. (2012) Differential Effects of Peripheral versus Central Coadministration of QX-314 and Capsaicin on Neuropathic Pain in Rats. Anesthesiology, 117, 365-380.
http://dx.doi.org/10.1097/ALN.0b013e318260de41
[7] Colvin, A.C., Wang, C.F., Soens, M.A., Mitani, A.A., Strichartz, G.R. and Gerner, P. (2011) Prolonged Cutaneous Analgesia with Transdermal Application of Amitriptyline and Capsaicin. Regional Anesthesia & Pain Medicine, 36, 236-240.
http://dx.doi.org/10.1097/AAP.0b013e31820c2c30
[8] Gokin, A. and Strichartz, G.R. (1999) Local Anesthetics Acting on the spinal cord. Access, Distribution, Pharmacology and Toxicology. In: Yaksh, T.L., Ed., Spinal Drug Delivery: Anatomy, Kinetics and Toxicology, Elsevier Publishers, New York, 477-501.
[9] Strichartz, G.R., Pastijn, E. and Sugimoto, K. (2009) Neural Physiology and Local Anesthetic Action. In: Cousins M.J., Carr D.B., Horlocker T.T., Bridenbaugh P.O., Eds., Neural Blockade in Clinical Anesthesia and Pain Medicine, Walters Kluwer-Lippincott Williams and Wilkins, Philadelphia, 26-47.
[10] Thalhammer, J.G., Vladimirova, M., Bershadsky, B. and Strichartz, G.R. (1995) Neurologic Evaluation of the Rat during Sciatic Nerve Block with Lidocaine. Anesthesiology, 82, 1013-1025.
http://dx.doi.org/10.1097/00000542-199504000-00026
[11] Mestre, C., Pelissier, T., Fialip, J., Wilcox, G. and Eschalier, A. (1994) A Method to Perform Direct Transcutaneous Intrathecal Injection in Rats. Journal of Pharmacological and Toxicological Methods, 32, 197-200.
http://dx.doi.org/10.1016/1056-8719(94)90087-6
[12] Frazier, D.T., Narahashi, T. and Yamada, M. (1970) The Site of Action and Active form of Local Anesthetics. II. Experiments with Quaternary Compounds. The Journal of Pharmacology and Experiment Therapeutics, 171, 45-51.
[13] Strichartz, G.R. (1973) The Inhibition of Sodium Currents in Myelinated Nerve by Quaternary Derivatives of Lidocaine. The Journal of General Physiology, 62, 37-57.
http://dx.doi.org/10.1085/jgp.62.1.37
[14] Hille, B. (1977) Local Anesthetics: Hydrophilic and Hydrophobic Pathways for the Drug-Receptor Reaction. The Journal of General Physiology, 69, 497-515.
http://dx.doi.org/10.1085/jgp.69.4.497
[15] Strichartz, G.R., Sanchez, V., Arthur, G.R., Chaftez, R. and Martin, D. (1990) Fundamental Properties of Local Anesthetics. II. Measured Octanol: Buffer Partition Coefficients and pKa Values of Clinically-Used Drugs. Anesthesia & Analgesia, 71, 158-170.
http://dx.doi.org/10.1213/00000539-199008000-00008
[16] Hille, B. (1977) The pH-Dependent Rate of Action of Local Anesthetics on the Node of Ranvier. Journal of General Physiology, 69, 475-496.
http://dx.doi.org/10.1085/jgp.69.4.475
[17] Huang, J.H., Thalhammer, J.G., Raymond, S.A. and Strichartz, G.R. (1997) Susceptibility to Lidocaine of Impulses in Different Somatosensory Afferent Fibers of Rat Sciatic Nerve. Journal of Pharmacology and Experimental Therapeutics, 282, 802-811.
[18] Gokin, A.P., Philip, B. and Strichartz, G.R. (2001) Preferential Block of Small Myelinated Sensory and Motor Fibers by Lidocaine: In Vivo Electrophysiology in the Rat Sciatic Nerve. Anesthesiology, 95, 1441-1454.
http://dx.doi.org/10.1097/00000542-200112000-00025
[19] Leffler, A., Fischer, M.J., Rehner, D, Kienel, S., Kistner, K., Sauer, S.K., Gawa, N.R., Reeh, P.W. and Nau, C. (2008) The Vanilloid Receptor TRPV1 Is Activated and Sensitized by Local Anesthetics in Rodent Sensory Neurons. Journal of Clinical Investigation, 118,763-776.
[20] Roberson, D., Binshtok, A.M., Blasl, F., Bean, B.P. and Woolf, C.J. (2011) Targeting of Sodium Channel Blockers into Nociceptors to Produce Long-Duration Analgesia: A Systematic Study and Review. British Journal of Pharmacology, 164, 48-58.
http://dx.doi.org/10.1111/j.1476-5381.2011.01391.x
[21] Sagie, I. and Kohane, D.S. (2010) Prolonged Sensory-Selective Nerve Blockade. Proceedings of the National Academy of Sciences of the United States of America, 107, 3740-3745.
http://dx.doi.org/10.1073/pnas.0911542107
[22] Nijs, J., Daenen, L., Cras, P., Struyf, F., Roussel, N. and Oostendorp, R.A.B. (2012) Nociception Affects Motor Output: A Review on Sensory-Motor Interaction with Focus on Clinical Implications. Clinical Journal of Pain, 28, 175-181.
http://dx.doi.org/10.1097/AJP.0b013e318225daf3
[23] Yamamoto, S., Ohsawa, M. and Ono, H. (2013) Contribution of TRPV1 Receptor-Expressing Fibers to Spinal Ventral Root After-Discharges and Mechanical Hyperalgesia in a Spared Nerve Injury (SNI) Rat Model. Journal of Pharmacological Sciences, 121, 9-16.
http://dx.doi.org/10.1254/jphs.12213FP
[24] Vanegas, H. and Schaible, H.G. (2004) Descending Control of Persistent Pain: Inhibitory or Facilitatory? Brain Research Reviews, 46, 295-309.
http://dx.doi.org/10.1016/j.brainresrev.2004.07.004
[25] Liu, B.G., Zhuang, X.L., Li, S.T., Xu, G.H., Brull, S.J. and Zhang, J.M. (2001) Effects of Bupivacaine and Ropivacaine on High-Voltage-Activated Calcium Currents in the Dorsal Horn Neurons in Newborn Rats. Anesthesiology, 95, 139-143.
http://dx.doi.org/10.1097/00000542-200107000-00024
[26] Xiong, Z. and Strichartz, G.R. (1998) Inhibition by Local Anesthetics of Ca2+ Channels in Rat Anterior Pituitary Cells. European Journal of Pharmacology, 363, 81-90.
http://dx.doi.org/10.1016/S0014-2999(98)00769-9
[27] Alberola-Die, A., Martinez-Pinna, J., González-Ros, J.M., Ivorra, I. and Morales, A. (2011) Multiple Inhibitory Actions of Lidocaine on Torpedo Nicotinic Acetylene Receptors Transplanted to Xenopus Oocytes. Journal of Neurochemistry, 117, 1009-1019.
http://dx.doi.org/10.1111/j.1471-4159.2011.07271.x
[28] Sugimoto, M., Uchida, I. and Mashimo, T. (2003) Local Anesthetics Have Different Mechanisms and Sites of Action at the Recombinant N-methyl-D-aspartate (NMDA) Receptors. British Journal of Pharmacology, 138, 876-882.
http://dx.doi.org/10.1038/sj.bjp.0705107
[29] Hollmann, M.W., McIntire, W.E., Garrison, J.C. and Durieux, M.E. (2002) Inhibition of Mammalian Gq Protein Function by Local Anesthetics. Anesthesiology, 97, 1451-1457.
http://dx.doi.org/10.1097/00000542-200212000-00017
[30] Li, Y.M., Wingrove, D.E., Too, M.P., Marnerakis, M., Stimson, E.R., Strichartz, G.R. and Maggio, J.E. (1995) Local Anesthetics Inhibit Substance P Binding and Evoked Increases in Intracellular Ca+2. Anesthesiology, 82, 166-173.
http://dx.doi.org/10.1097/00000542-199501000-00021
[31] Regehr, W. and Stevens, C.F. (2001) Physiology of Synaptic Transmission and Short-Term Plasticity in Synapses. In: Cowan, W.M., Sudhof, T.C., Stevens, C.F., Eds., Synapses, Johns Hopkins Press, Baltimore, 155-156.
[32] Jin, D.Z., Guo, M.L., Xue, B., Fibuch, E.E., Choe, E.S., Mao, L.M. and Wang, J.Q. (2013) Phosphorylation and Feedback Regulation of Metabotropic Glutamate Receptor 1 by Calcium/Calmodulin-Dependent Protein Kinase II. Journal of Neuroscience, 33, 3402-3412.
http://dx.doi.org/10.1523/JNEUROSCI.3192-12.2013
[33] Gould, C.M. and Newton, A.C. (2008) The Life and Death of Protein Kinase C. Current Drug Targets, 9, 614-625.
http://dx.doi.org/10.2174/138945008785132411
[34] Mikawa, K., Maekawa, N., Hoshina, H., Tanaka, O., Shirakawa, J., Goto, R., Obara, H. and Kusunoki, M. (1990) Inhibitory Effect of Barbiturates and Local Anaesthetics on Protein Kinase C Activation. Journal of International Medical Research, 18, 153-160.