ARS  Vol.3 No.2 , June 2014
Multi-Temporal Analysis of Land Subsidence in Toluca Valley (Mexico) through a Combination of Persistent Scatterer Interferometry (PSI) and Historical Piezometric Data
Abstract: The Toluca Valley Aquifer (TVA) is considered one of the most overexploited aquifers in Mexico because of the high rate of groundwater extraction for supplying urban and industrial water to Mexico City and Toluca City, which causes land subsidence in urban and suburban areas. In this paper, we propose a multi-temporal analysis that uses persistent scatterer interferometry (PSI) method to evaluate the subsidence processes in Toluca Valley. The PSI results revealed differential movements of the ground of as much as 83 mm/year. A spatial variation of PSI results was identified with respect to previous studies using the conventional Din SAR methodology. The spatial distribution and density suggested the possibility of an expanding trend of subsidence process at north, northeast and east of the TVA, which corresponds to the region with the highest density of pumping wells for industrial and agricultural use.
Cite this paper: Davila-Hernandez, N. , Madrigal, D. , Exposito, J. and Antonio, X. (2014) Multi-Temporal Analysis of Land Subsidence in Toluca Valley (Mexico) through a Combination of Persistent Scatterer Interferometry (PSI) and Historical Piezometric Data. Advances in Remote Sensing, 3, 49-60. doi: 10.4236/ars.2014.32005.

[1]   Ferreti, A., Prati, C., Rocca, F. and Wasowski, J. (2006) Satellite Interferometry for Monitoring Ground Deformations in the Urban Environment. Proceedings 10th IAEG Congress, Nottingham, 100-110.

[2]   Gueguen, Y., Deffontaines, B., Fruneau, B., Heib, M. and Raucoules, D. (2009) Monitoring Residual Mining Subsidence of Nord/Pas-de-Calais Coal Basin from Differential and Persistent Scatterer Interferometry (Northern France). Journal of Applied Geophysics, 69, 24-34.

[3]   Parcharidis, M., Foumelis, M., Kourkouli, P. and Wegmuller, U. (2009) Persistent Scatterer InSAR to Detect Ground Deformation over Rio-Antirio Area (Western Greece) for Period 1992-2000. Journal of Applied Geophysics, 68, 348-355.

[4]   Lopez, P., Doin, M., Tupin, F., Briole, P. and Nicolas, J. (2009) Time Series Analysis of Mexico City Subsidence Constrained by Radar Interferometry. Journal of Applied Geophysics, 69, 1-15.

[5]   Heleno, S., Oliveira, L., Henriques, M., Falcao, A., Lima, J., Cooksley, G., Ferretti, A., Fonseca, A., Lobo, J. and Fonseca, J. (2011) Persistent Scatterers Interferometry Detects and Measures Ground Subsidence in Lisbon. Remote Sensing of Environment, 115, 2152-2167.

[6]   Sousa, J., Ruiz, A., Hanssen, R., Bastos, L., Gil, A., Galindo, J. and Sanz, C. (2010) PS-InSAR Processing Methodologies in the Detection of Field Surface Deformation—Study of the Granada Basin (Central Betic Cordilleras, Southern Spain). Journal of Geodynamics, 49, 181-189.

[7]   Hung, W., Hwang, Ch., Chen, Y., Chang, Ch., Yen, J., Hooper, A. and Yang, Ch. (2011) Surface Deformation from Persistent Scatterers SAR Interferometry and Fusion with Leveling Data: A Case Study over the Choushui River Alluvial Fan, Taiwan. Remote Sensing of Environment, 115, 957-967.

[8]   Osmanoglu, T., Wdowinski, S., Cabral, E. and Jiang, Y. (2011) Mexico City Subsidence Observed with Persistent Scatterer InSAR. International Journal of Applied Earth Observation and Geoinformation, 13, 1-12.

[9]   Tung, H. and Hu, J. (2012) Assessments of Serious Anthropogenic Land Subsidence in Yunlin County of Central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics, 578, 126-135.

[10]   Cigna, F., Osmanoglu, B., Cabral, E. and Dixon, T. (2011) Monitoring Land Subsidence and Its Induced Geological Hazard with Synthetic Aperture Radar Interferometry: A Case Study in Morelia, Mexico. Remote Sensing of Environment, 117, 146-161.

[11]   Chaussard, E., Wdowinski, S., Cabral, E. and Amelung, F. (2014) Land Subsidence in Central Mexico Detected by ALOS InSAR Time-Series. Remote Sensing of Environment, 104, 94-106.

[12]   Hooper, A. (2008) A Multi-Temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches. Geophysics Research Letters, 35, Article ID: L16302.

[13]   Pinel, V., Hooper, A., De la Cruz, G., Reyes, G. and Doin, M. (2011) The Challenging Retrieval of Displacement Field from InSAR Data for Andesitic Stratovolvanoes: Case Study of Popocatepetl and Colima Volcano, Mexico. Journal of Volcanology and Geothermal Research, 200, 49-61.

[14]   Catalano, S., Bonforte, A., Guglielmino, F., Romagnoli, G., Tarsia, C. and Tortorici, G. (2013) The Influence of Erosional Processes on the Visibility of Permanent Scatterers Features from SAR Remote Sensing on Mount Etna (E Sicily). Geomorphology, 198, 128-137.

[15]   Magnusson, E., Bjornsson, H., Rott, H., Roberts, M., Pálsson, F., Gudmundsson, S., Bennett, R., Geirsson, H. and Sturkell, E. (2011) Localized Uplift of Vatnajokull, Iceland: Subglacial Water Accumulation Deduced from InSAR and GPS Observations. Journal of Glaciology, 57, 475-484.

[16]   Rignot, E., Mouginot, J. and Scheuchl, B. (2011) Antarctic Grounding Line Mapping from Differential Satellite Radar Interferometry. Geophysical Research Letters, 38, Article ID: L10504.

[17]   Castaneda, C., Gutiérrez, F., Manunta, M. and Galve, J. (2009) DInSAR Measurements of Ground Deformation by Sinkholes, Mining Subsidence, and Landslides, Ebro River, Spain. Earth Surfaces Processes and Landforms, 34, 1562-1574.

[18]   Holbling, D., Fureder, P., Antolini, F., Cigna, F., Casagli, N. and Lang, S. (2013) A Semi-Automated Object-Based Approach for Landslide Detection Validated by Persistent Scatterer Interferometry Measures and Landslide Inventories. Remote Sensing, 4, 1310-1336.

[19]   Dong, S., Yin, H., Yao, S. and Zhang, F. (2013) Detecting Surface Subsidence in Coal Mining Area Based on DInSAR Technique. Journal of Earth Science, 24, 449-456.

[20]   Sarychikhina, O., Glowacka, E. and Mellors, R. (2007) Preliminary Results of a Surface Deformation Study, Using Differential InSAR Technique at the Cerro Prieto Geothermal Field, B.C., Mexico. Renewable Baseload Energy: Geothermal Heat Pumps to Engineered Reservoirs, Reno, 30 September 2007.

[21]   Hunstad, I., Pepe, A., Atzori, S., Tolomei, C., Salvi, S. and Lanari, R. (2009) Surface Deformation in the Abruzzi Region, Central Italy, from Multitemporal DInSAR Analysis. Geophysical Journal International, 178, 1193-1197.

[22]   Currenti, G., Solaro, G., Napoli, R., Pepe, A., Bonaccorso, A., Del Negro, C. and Sansosti, E. (2012) Modeling of ALOS and COSMO-SkyMed Satellite Data at Mt Etna: Implications on Relation between Seismic Activation of the Pernicana Fault System and Volcanic Unrest. Remote Sensing of Environment, 125, 64-72.

[23]   Zebker, H.A. and Villasenor, J. (1992) Decorrelation in Interferometric Radar Echoes. IEEE Transactions on Geoscience and Remote Sensing, 30, 950-959.

[24]   Zebker, H.A., Rosen, P.A. and Hensley, S. (1997) Atmospheric Effects in Interferometric Synthetic Aperture Radar Surface Deformation and Topographic Maps. Journal of Geophysical Research, 102, 7547-7563.

[25]   Hanssen, R.F. (2001) Radar Interferometry: Data Interpretation and Error Analysis. Remote Sensing and Digital Image Processing, 3, 308.

[26]   Ferretti, A., Prati, C. and Rocca, F. (2000) Nonlinear Subsidence Rate Estimation Using the Permanent Scatterers in Differential SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38, 2202-2012.

[27]   Ferretti, A., Prati, C. and Rocca, F. (2001) Permanent Scatterers in SAR Interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39, 8-20.

[28]   Calderhead, A., Martel, R., Alasset, P., Rivera, A. and Garfias, J. (2010) Land Subsidence Induced by Groundwater Pumping, Monitored by D-InSAR and Field Data in the Toluca Valley, Mexico. Canadian Journal of Remote Sensing, 36, 9-23.

[29]   Calderhead, A., Therrien, R., Rivera, A., Martel, R. and Garfias, J. (2011) Simulating Pumping-Induced Regional Land Subsidence with the Use of InSAR and Field Data in the Toluca Valley, Mexico. Advances in Water Resources, 34, 83-97.

[30]   Yan, Y., Doin, M., Lopez, P., Tupin, F., Fruneau, B., Pinel, V. and Trouve, E. (2012) Mexico City Subsidence Measured by InSAR Time Series: Joint Analysis Using PS and SBAS Approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4, 1312-1326.

[31]   Garfias, J., Bibiano, L. and Llanos, C. (2008) Uso racional y sostenible de los recursos hidricos del acuifero del valle de Toluca. Ciencia Ergo Sum, 15, 61-72.

[32]   Comision Nacional del Agua (2009) Estadisticas del Agua de la Region Hidrologico-Administrativa XIII, Aguas del Valle de Mexico. Comision Nacional del Agua, Mexico.

[33]   Sultan, R. (2001) Impacts on Wetland Hydrology from Extensive Groundwater Extraction: Lerma River Basin, Mexico. A Thesis of Master of Science in Earth Sciences, University of Waterloo, Canada.

[34]   Diez, A. (2010) Alternativas de administración racional de recursos hidricos en el acuifero sometido a sobreexplotacion: Valle de Toluca. A PhD Thesis, Universidad Autonoma del Estado de Mexico, Mexico.

[35]   Farina, P., Avila, J. and Garduno, V. (2007) Structurally-Controlled Urban Subsidence along the Mexican Volcanic Belt (MVB) Monitored by InSAR. Proceedings of Envisat Symposium, Montreux, 23-27 April 2007.

[36]   Pacheco, J. and Arzate, J. (2007) Analisis multicapa de la subsidencia en el valle de Queretaro, Mexico. Revista Mexicana de Ciencias Geologicas, 24, 389-402.

[37]   Sarychikhina, O., Glowacka, E., Vidal, F., Mellors, R. and Ramirez, J. (2011) Aplicacion de DInSAR a los estudios de subsidencia en el Valle de Mexicali. Boletin de la Sociedad Geologica Mexicana, 63, 1-13.

[38]   Honorio, R. and Hernandez, H. (1982) Origen, estratigrafia y petrologia de la Cuenca de Mexico y sierras circunvecinas. A Thesis of Master, IPN-ESIA-Mexico.