JBPC  Vol.5 No.3 , August 2014
Thermodynamics of the Second Stage Dissociation Step (pK2) of Buffer Monosodium 1,4-Piperazinediethanesulfonate from (278.15 to 328.15) K
ABSTRACT
Values of the second thermodynamic dissociation constant pK2 of the protonated form of monosodium 1,4-piperazinediethanesulfonate (PIPES) have been determined at twelve different temperatures in the temperature range from (278.15 to 328.15) K including the body temperature 310.15 K by measurement of the electromotive-force for cells without liquid junction of the type: Pt (s), H2 (g), 101.325 kPa|Na-PIPES (m1) + Na 2-PIPES (m2) + NaCl (m3)|AgCl (s), Ag (s), where m1, m2 and m3 indicate the molalities of the corresponding species at 1 atm = 101.325 kPa in SI units. The pK2 values for the dissociation of Na-PIPES are represented by the equation: pK2 = -1303.76/T + 48.369 - 6.46889 lnT with an uncertainty of ± 0.001. The values of pK2 for Na-PIPES were found to be 7.1399 ± 0.0004 at 298.15 K and 7.0512 ± 0.0004 at 310.15 K, respectively, and indicate that this buffer would be useful as pH standard in the range of physiological application. Standard thermodynamic quantities for the acidic dissociation process of Na-PIPES have been derived from the temperature coefficients of the pK2. These values are compared with those of structurally related N-substituted PIPERAZINE and TAURINE at 298.15 K.

Cite this paper
Roy, R. , Roy, L. , Dinga, J. , Medcalf, M. , Hundley, K. , Hines, E. , Parmar, R. , Veliz, J. , Summers, C. and Tebbe, L. (2014) Thermodynamics of the Second Stage Dissociation Step (pK2) of Buffer Monosodium 1,4-Piperazinediethanesulfonate from (278.15 to 328.15) K. Journal of Biophysical Chemistry, 5, 91-98. doi: 10.4236/jbpc.2014.53010.
References
[1]   King, E. (1952) The Ionization Constants of Taurine and Its Activity Coefficients in Hydrochloric Acid Solutions from Electromotive Force Measurements. Journal of the American Chemical Society, 75, 2204-2209.
http://dx.doi.org/10.1021/ja01105a053

[2]   Hetzer, H., Robinson, R. and Bates, R. (1968) Dissociation Constants of Piperazinium Ion and Related Thermodynamic Quantites from 0 to 50C. The Journal of Physical Chemistry, 72, 2081-2086.
http://dx.doi.org/10.1021/j100852a034

[3]   Vega, C. and Bates, R. (1976) Buffers for the Physiological pH Range: Thermodynamic Constants of Four Substituted Aminoethansulfonic Acids from 5 to 50C. Analytical Chemistry, 48, 1293-1295.
http://dx.doi.org/10.1021/ac50003a010

[4]   Roy, R.N., Mrad, D.R., Lord, P.A., et al. (1998) Thermodynamics of the Second Dissociation Constant and Standards for pH of 3-(N-Morpholino) Propanesulfonic Acid (MOPS) from 5 to 55C. Journal of Solution Chemistry, 27, 73-87.
http://dx.doi.org/10.1023/A:1022692629289

[5]   Roy, R.N., Gibbons, J.J., Krueger, C., et al. (1977) Second-Stage Dissociation of N,N-Bis(2-Hydroxyethyl)-2-Ami- noethane-Sulfonic Acid (BES) in Water and in 50 Mass% Methanol + Water from 278.15 to 328.15 K. Journal of Chemical Thermodynamics, 9, 325-332.
http://dx.doi.org/10.1016/0021-9614(77)90053-2

[6]   Roy, R.N., Moore, C.P., Carlsten, J.A., Good, W.S., et al. (1997) Second Dissociation Constants of Two Substituted Aminoethanesulfonic Acids (MES) and (TES) in Water from 5 to 55C. Journal of Solution Chemistry, 26, 1209-1216.
http://dx.doi.org/10.1023/A:1022937324983

[7]   Roy, R.N., Bice, J., Greer, J., et al. (1997) Buffers for the Physiological pH Range: Acidic Dissociation Constants of Zwitterionic Compounds (ACES and CHES) in Water from 5 to 55C. Journal of Chemical Engineering Data, 42, 41-44.
http://dx.doi.org/10.1021/je960279s

[8]   Good, N.E., Winget, G.D., Winter, W., et al. (1966) Hydrogen Ion Buffers for Biological Research. Biochemistry, 5, 467-477.
http://dx.doi.org/10.1021/bi00866a011

[9]   Roy, R.N., Gibbons, J.J., Padron, J.L. and Moeller, J. (1980) Second-Stage Dissociation Constants of Piperazine-N,N’- Bis(2-Ethanesulfonic Acid) Monosodium Monohydrate and Related Thermodynamic Functions in Water from 5 to 55C. Analytical Chemistry, 52, 2409.
http://dx.doi.org/10.1021/ac50064a040

[10]   Harned, H.S. and Ehlers, R.W. (1932) The Dissociation Constant of Acetic Acid from 0 to 35 Centigrade. Journal of the American Chemical Society, 54, 1350-1357.
http://dx.doi.org/10.1021/ja01343a013

[11]   Gary, R., Bates, R.G. and Robinson, R.A. (1964) Thermodynamics of Solutions of Deuterium Chloride in Heavy Water from 5 to 55C. Journal of Physical Chemistry, 65, 1186-1190.
http://dx.doi.org/10.1021/j100787a037

[12]   Sankar, M. and Bates, R.C. (1978) Buffers for the Physiological pH Range: Thermodynamic Constants of 3-(N-Morpholino)Propanesulfonic Acid from 5 to 55C. Analytical Chemistry, 50, 1922-1924.
http://dx.doi.org/10.1021/ac50035a048

[13]   Roy, R.N., Robinson, R.A. and Bates, R.G. (1973) Thermodynamic of the Two Dissociation Steps of N-Tris(Hydroxymethyl)Methylglycine (“Tricine”) in Water from 5 to 55C. Journal of the American Chemical Society, 95, 8231- 8235.
http://dx.doi.org/10.1021/ja00806a004

[14]   Bates, R.G. (1973) Determination of pH. Wiley, New York, Chapter 10.

[15]   Bates, R.G., Vega, C.A. and White, D.R. (1987) Standards for pH Measurements in Isotonic Saline Media of Ionic Strength I = 0.16. Analytical Chemistry, 50, 1295-1300.
http://dx.doi.org/10.1021/ac50031a026

[16]   Roy, R.N., Vogel, K.M., Good, C.E., et al. (1992) Activity Coefficients in Electrolyte Mixtures: HCl + ThCl4 + H2O for 5 - 55C. Journal of Physical Chemistry, 96, 11065-11072.
http://dx.doi.org/10.1021/j100205a081

[17]   Bates, R.G., Guggenheim, E.A., Harned, S.H., Ives, D.J.G, et al. (1956) Standard Electrode Potential of the Silver, Silver Chloride Electrode. Journal of Chemical Physics, 25, 361.
http://dx.doi.org/10.1063/1.1742893

[18]   Ives, D.J.G. and Moseley, P.G.N. (1975) Derivation of Thermodynamic Functions of Ionization from Acidic Dissociation Constants. Journal Chemical Society, 72, 1132-1143.

[19]   Please, N.W. (1954) Estimation of the Variance of the Data Used in the Calculation of Dissociation Constants. Biochemistry Journal, 56, 196-201.

[20]   Roy, R.N., Grant, J.G., Roy, L.N., Cummins, M.P., et al. (2002) Second Dissociation Constants of N-[4-Morpholi- no]Butanesulfonic Acid and N-[2-Hydroxymethyl]Piperazine-N’-4-Butanesulfonic Acid from 5 to 55C. Journal of Solution Chemistry, 31, 861-872.
http://dx.doi.org/10.1023/A:1021459621374

[21]   Feng, D., Koch, W.F. and Wu, Y.C. (1989) Second Dissociation Constant and pH of N-(2-Hydroxyethyl)Piperazine- N’-2-Ethanesulfonic Acid from 0 to 50C. Analytical Chemistry, 61, 1400-1405.
http://dx.doi.org/10.1021/ac00188a019

[22]   Roy, R.N., Roy, L.N., LeNoue, S.R., et al. (2005) Thermodynamic Constants of N-[Tris(Hydroxymethyl)Methly- 3-Amino]Propanesulfonic Acid (Taps) from the Temperatures 278.15 K to 328.15 K. Journal of Chemical Thermodynamics, 38, 413-417.
http://dx.doi.org/10.1016/j.jct.2005.06.009

[23]   Paabo, M. and Bates, R.G. (1970) Dissociation Constant of Protonated 2,2-Bis(Hydroxymethyl)-2,2’,2”-Nitrilotrie- thanol (Bis-Tris) and Related Thermodynamic Functions from 0 to 50. Journal of Physical Chemistry, 74, 702-705.
http://dx.doi.org/10.1021/j100699a003

[24]   Timimi, B.A. and Everett, D.H. (1968) The Thermodynamics of the Acid Dissociation of Some Amino-Alcohols in Water. Journal Chemical Society B, 1380-1386.
http://dx.doi.org/10.1039/j29680001380

[25]   Roy, L.N., Roy, R.N., Bodendorfer, B., Downs, Z., et al. (2011) Buffer Standards for the Physiological pH of the Zwitterionic Buffer 3-[N-Tris(Hydroxymethyl)Methylamino]-2-Hydroxypropanesulfonic Acid (TAPSO) from (287.15 to 328.15) K. Journal of Biophysical Chemistry, 2, 414-421.
http://dx.doi.org/10.4236/jbpc.2011.24048

 
 
Top