JBCPR  Vol.2 No.2 , June 2014
An Innovative Architectural Strategy for the Integration of Energy Issues into the Design Process of a Commercial Center in Switzerland
Abstract: In a context of growing efforts to develop sustainability strategies, energy-related issues occupy central stage in the built environment. Thus, the energy performance of housings has improved radically over the past decades. Yet other types of buildings, in particular commercial centers, haven’t received the same level of interest. As a result, there is a need for effective and practical measures to decrease their energy consumption, both for heating and electricity. The objective of the paper is to demonstrate that it is possible, through coherent strategies, to integrate energy issues and bioclimatic principles into the design process of commercial centers. It analyzes the exemplary case study of Marin Commercial Center (Switzerland). The interdisciplinary approach, based on integrated design strategies, aimed at increasing the energy efficiency while keeping the cost comparable to the market cost. The main design principles include natural ventilation, nighttime cooling with energy recovery and natural lighting, as well as optimization of mechanical systems. The results of the simulations show that Marin Center attains the best energy performance observed so far among Swiss commercial centers. It also meets the Swiss Minergie standard. The paper thus questions traditional design processes and outlines the need for interdisciplinary evaluation and monitoring approaches tailored for commercial centers. Even though most crucial decisions are taken during the early stages, all phases of the process require systematic optimization strategies, especially operating stages. Recommendations include legal measures, in particular in the fields of ventilation and air-conditioning, education, professional development and technology transfer, and financial incentives for the replacement of energy intensive installations.
Cite this paper: Rey, E. , Frei, W. , Lufkin, S. and Aiulfi, D. (2014) An Innovative Architectural Strategy for the Integration of Energy Issues into the Design Process of a Commercial Center in Switzerland. Journal of Building Construction and Planning Research, 2, 83-95. doi: 10.4236/jbcpr.2014.22008.

[1]   Wallbaum, H. (2012) Mainstreaming Energy and Resource Efficiency in the Built Environment—Just a Dream? IED Public Lecture Series, Zurich.

[2]   Zimmermann, M., Althaus, H.-J. and Haas, A. (2005) Benchmarks for Sustainable Construction: A Contribution to Develop a Standard. Energy and Buildings, 37, 1147-1157.

[3]   Fisch, N., Plesser, S. and Bremer, C. (2007) EVA—Evaluierung von Energiekonzepten für Bürogebäude. Braunschweig: Institut für Gebäude- und Solartechnik—IGS.

[4]   Aiulfi, D., Primas, A., Jakob, M., et al. (2010) Energieverbrauch von Bürogebäuden und Grossverteilen. Erhebung des Strom- und Wärmeverbrauchs, der Verbrauchsanteile, der Entwicklung in den letzten 10 Jahren und Identifizierung des Optimierungspotentiale. Office fédéral de l’Energie (OFEN), Berne.

[5]   Architecture Today. The New Marin Centre, Marin-Epagnier, a New Shopping Centre in Switzerland., 07.02.2012, viewed on 2012.12.07.

[6]   Aiulfi, D., Frei, W., Rey, E. and Rota, A. (2011) Architecture durable en pratique. TEC21|TRACES, Dossier 11: 36-49.


[8]   Gagne, J., Andersen, M. and Norford, L. (2011) An Interactive Expert System for Daylighting Design Exploration. Building and Environment, 46, 2351-2364.

[9]   Robinson, D., Haldi, F., Kämpf, J.H., Leroux, P., Perez, D., Rasheed, A. and Wilke, U. (2009) CitySim: Comprehensive Micro-Simulation of Resource Flows for Sustainable Urban Planning. Proceedings of the 11th International Building Performance Simulation Association Conference, Glasgow, 1083-1090.

[10]   Rey, E. (2012) Régénération des friches urbaines et développement durable. Vers une évaluation intégrée à la dynamique du projet. Louvain-la-Neuve: Presses universitaires de Louvain (in press).

[11]   Weytjens, L., Attia, S., Verbeeck, G. and De Herde, A. (2011) The “Architect-Friendliness” of Six Building Performance Simulation Tools: A Comparative Study. International Journal of Sustainable Building Technology and Urban Development, 2, 237-244.

[12]   Verdonck, E., Weytjens, L., Verbeeck, G. and Froyen, H. (2011) Design Support Tools in Practice. The Architects’ Perspective. In: Leclercq, P., Heylighen, A. and Geneviève, M, Eds., CAAD Futures 2011 Proceedings of the 14th International Conference on Computer-Aided Architectural Design, 769-784,

[13] viewed on 2012.12.11

[14]   Koschenz, M. and Pfeiffer, A. (2005) Potenzial Wohngebäude. Energie- und Gebäudetechnik für die 2000-Watt-Gesellschaft. Faktor Verlag, Zurich.

[15]   Société suisse des ingénieurs et architectes (SIA). SIA Merkblatt 2024, Ausgabe 2006. Standard-Nutzungsbedingungen für Energie- und Gebäudetechnik. SIA, Zurich. 2006.

[16]   Société suisse des ingénieurs et des architectes (SIA). SIA 380/1 Thermische Energie im Hochbau. SIA, Zurich. 2009.

[17]   Société suisse des ingénieurs et des architectes (SIA). SIA 380/4 Elektrische Energie im Hochbau. SIA, Zurich. 2006.

[18]   Guide pour les magasins d'alimentation, RAVEL, Office fédéral des questions conjoncturelles, 1995, 724.323f

[19]   Trebilcock, M., Ford, B. and Wilson, R. (2006) Integration of Sustainability in the Design Process of Contemporary Architectural Practice. PLEA 2006—Proceedings of the 23rd Conference on Passive and Low Energy Architecture, Geneva, Switzerland.

[20] viewed on 2012.12.11

[21]   Stadt Zürich (2010) Increased Energy Efficiency with a Bonus for Business Clients. Stadtentwicklung, Zurich.

[22]   Rey, E. (2011) (Re)construire la ville autrement. Tracés, 17, 7-10

[23]   Aiulfi, D. and Rey, E. (2010) Les technologies vertes, matières premières pour la créativité des architectes. Conférence miCro 10, aula des Jeunes-rives, Neuchatel.