On q-Deformed Calculus in Quantum Geometry

Show more

References

[1] Connes, A. (1986) Non-Commutative Differential Geometry. Extrait des Publications Mathematiques-IHES, 62. (cited in: Qauntum Principal Bundles and Their Characteristic Classes (pdf), by MICO DURDEVIC, arXiv:q-alg/960505008vi (5 May 1996))

[2] Connes, A. (1994) Noncommutative Geometry. Academic Press, New York.

[3] Brateli, O. and Robinson, D. (1979) Operator Algebras and Quantum Statistical Mechanics, Volumes 1/2. Springer-Verlag, Berlin.

[4] Brown, L.G., Douglas, R.G. and Filmore, P.G. (1977) Extensions of C*-Algebras and K-Homology. Annals of Mathematics, 105, 265-324. http://dx.doi.org/10.2307/1970999

[5] Benaoum, H.B. (1999) (q; h)-Analogue of Newton’s Binomial Formula. Journal of Physics A: Mathematical and General, 32, 2037-2040. http://dx.doi.org/10.1088/0305-4470/32/10/019

[6] Rosengren, H. (1999) Multivariable Orthogonal Polynomials as Coupling Coefficients for Lie and Quantum Algebra Representations. Dissertation, Centre for Mathematical Sciences, Mathematics (Faculty of Science), Lund, 167.

[7] Kowalski-Glikman, J. (1998) Black Hole Solution of Quantum Gravity. Physics Letters A, 250, 62-66.
http://dx.doi.org/10.1016/S0375-9601(98)00706-3

[8] Chang, Z. (1999) Quantum Anti-De Sitter Space. (reprint)

[9] Steinacker, H. (1998) Finite Dimensional Unitary Representations of Quantum Antide Sitter Groups at Roots of Unity. Communications in Mathematical Physics, 192, 687-706.

http://dx.doi.org/10.1007/s002200050315