A New Integral Equation for the Spheroidal Equations in Case of m Equal to 1

Guihua Tian^{*}

Show more

References

[1] Flammer, C. (1956) Spheroidal Wave Functions. Stanford University Press, Stanford.

[2] Stratton, J., et al. (1956) Spheroidal Wave Functions. Wiley, New York.

[3] Li, L., Kang, X. and Leong, M. (2002) Spheroidal Wave Functions in Electromagnetic Theory. John Wiley and Sons, Inc., New York.

[4] Tian, G.H. and Zhong, S.Q. (2009) Arxiv: 0906.4687 V3: Investigation of the Recurrence Relations for the Spheroidal Wave Functions. Preprint.

[5] Tian, G.H. and Zhong, S.Q. (2009) Arxiv: 0906.4685 V3: Solve Spheroidal Wave Functions by SUSY Method. Preprint.

[6] Tian, G.H. (2010) New Method to Study the Spheroidal Functions. Chinese Physics Letter, 27, 030308.

http://dx.doi.org/10.1088/0256-307X/27/3/030308

[7] Cooper, F., Khare, A. and. Sukhatme, U. (1995) Super-Symmetry and Quantum Mechanics. Physics Reports, 251, 267-385.

http://dx.doi.org/10.1016/0370-1573(94)00080-M

[8] Tian, G.-H. and Zhong, S.-Q. (2010) The Recurrence Relations for the Spheroidal Functions. Science China G, 54, 393-400.

[9] Tian, G.H. and Li, Z.Y. (2011) Can All the Recurrence Relations for Spherical Functions Be Extended to Spheroidal Functions. Science China G, 54, 1775-1782.

http://dx.doi.org/10.1007/s11433-011-4469-8

[10] Tang, W.L. and Tian, G.H. (2011) Solving Ground Eigenvalue and Eigenfunction of Spheroidal Wave Equation at Low Frequency by Supersymmetric Quantum Mechanics Method. Chinese Physics B, 20, Article ID: 010304.

[11] Tang, W.L. and Tian, G.H. (2011) Solving the Spin-Weighted Spheroidal Wave Equation with Small c by SUSYQM Method. Chinese Physics B, 20, Article ID: 050301.

[12] Tian, G.H. (2005) The Integral Equations for the Spin-Weighted Spheroidal Functions. Chinese Physics Letter, 22, 3013-3017.