Back
 AJAC  Vol.5 No.8 , June 2014
Cr-Doped TiO2 Thin Films Prepared by Means of a Magnetron Co-Sputtering Process: Photocatalytic Application
Abstract: This paper deals with the effect of Cr content on photocatalytic activity of TiO2 thin films deposited on quartz and intrinsic silicon substrates by using the RF magnetron co-sputtering process. Some physical investigations on such sputtered films were made by means of X-ray Diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy as well as UV-Vis-IR absorption techniques. The heat treatment under oxygen atmosphere at 550°C reveals that the crystalline structure of TiO2: Cr depends on Cr content. Anatase-to-rutile phase transformation occurs at a Cr content of about 7%. On the other hand, the band gap energy value of annealed TiO2: Cr films varies in terms of Cr doping and a transition around 7% of Cr is accrued. The photocatalytic activity of undoped and doped TiO2 films was evaluated by photo-degrading of the amido black under UV light irradiation. Modification of the chemical structure of titanium dioxide by Cr doping allows moving the photocatalytic activity of titanium dioxide towards visible light. The results indicate that films doped with 2% Cr exhibit the highest UV and visible light photocatalytic activity.
Cite this paper: Hajjaji, A. , Atyaoui, A. , Trabelsi, K. , Amlouk, M. , Bousselmi, L. , Bessais, B. , El Khakani, M. and Gaidi, M. (2014) Cr-Doped TiO2 Thin Films Prepared by Means of a Magnetron Co-Sputtering Process: Photocatalytic Application. American Journal of Analytical Chemistry, 5, 473-482. doi: 10.4236/ajac.2014.58056.
References

[1]   Campbell, S.A., Kim, H.S., Gilmer, D.C., He, B., Ma, T. and Gladfelter, W.L. (1999) Titanium Dioxide (TiO2)-Based Gate Insulators. Journal of Research and Development, 43, 383-392.
http://dx.doi.org/10.1147/rd.433.0383

[2]   Chatterjee, S. (2008) Titania-Germanium Nanocomposite as a Photovoltaic Material. Solar Energy, 82, 95-99.
http://dx.doi.org/10.1016/j.solener.2007.07.005

[3]   Alessandri, I., Comini, E., Bontempi, E., Fagila, G., Depero, L.E. and Sberveglieri, G. (2007) Cr-Inserted TiO2 Thin Films for Chemical Gas Sensors. Sensors and Actuators B, 128, 312-319.
http://dx.doi.org/10.1016/j.snb.2007.06.020

[4]   Dholam, R., Patel, N., Adami M. and Miotello, A. (2009) Hydrogen Production by Photocatalytic Water-Splitting Using Cr- or Fe-Doped TiO2 Composite Thin Films Photocatalyst. International Journal of Hydrogen Energy, 34, 5337-5346.
http://dx.doi.org/10.1016/j.ijhydene.2009.05.011

[5]   Szymanowski, D., Sobczyk, A., Gazicki-Lipman, M., Jakubowski, W. and Klimek, L. (2005) Plasma Enhanced CVD Deposition of Titanium Oxide for Biomedical Application. Surface and Coatings Technology, 200, 1036-1040.

[6]   Kim, J.H., Lee, S. and Im, H.S. (1999) The Effect of Target Density and Its Morphology on TiO2 Thin Films Grown on Si(100) by PLD. Applied Surface Science, 151, 6-16.
http://dx.doi.org/10.1016/S0169-4332(99)00269-X

[7]   Tang, H., Prasad, K., Sanjines, R., Schmid, P.E. and Levy, F. (1994) Electrical and Optical Properties of TiO2 Anatase Thin Films. Journal of Applied Physics, 75, 2042-2047.
http://dx.doi.org/10.1063/1.356306

[8]   Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
http://dx.doi.org/10.1038/238037a0

[9]   Gole, J.L., Stout, J.D., Burda, C., Lou, Y. and Chen, X. (2004) Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale. The Journal of Physical Chemistry B, 108, 1230-1240.
http://dx.doi.org/10.1021/jp030843n

[10]   Peng, Y.-H., Huang, G.-F. and Huang, W.-Q. (2012) Visible-Light Absorption and Photocatalytic Activity of Cr-Doped TiO2 Nanocrystal Films. Advanced Powder Technology, 23, 8-12.

[11]   Li, Y., Wang, W., Qiu, X.F., Song, L., Meyer, III, H.M., Paranthaman, M.P., Eres, G., Zhang, Z.Y. and Gu, B.H. (2011) Comparing Cr, and N only Doping with (Cr, N)-Codoping for Enhancing Visible Light Reactivity of TiO2. Applied Catalysis B: Environmental, 110, 148-153.
http://dx.doi.org/10.1016/j.apcatb.2011.08.037

[12]   Colmenares, J.C., Magdziarz, A., Kurzydlowski, K., Grzonka, J., Chernyayeva, O. and Lisovytskiy, D. (2013) Low-Temperature Ultrasound-Promoted Synthesis of Cr-TiO2-Supported Photocatalysts for Valorization of Glucose and Phenol Degradation from Liquid Phase. Applied Catalysis B: Environmental, 134-135, 136-144.
http://dx.doi.org/10.1016/j.apcatb.2013.01.020

[13]   Fan, X.X., Chen, X.Y., Zhu, S.P., Li, Z.S., Yu, T., Ye, J.H. and Zou, Z.G. (2008) The Structural, Physical and Photo-catalytic Properties of the Mesoporous Cr-Doped TiO2. Journal of Molecular Catalysis A: Chemical, 284, 155-160.
http://dx.doi.org/10.1016/j.molcata.2008.01.005

[14]   Ni, M., Leung, M.K.H. and Leung, D.Y.C. (2007) A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renewable and Sustainable Energy Reviews, 11, 401-425.
http://dx.doi.org/10.1016/j.rser.2005.01.009

[15]   Choi, W.Y., Termin, A. and Hoffmann, M.R. (1994) The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. The Journal of Physical Chemistry, 84, 13669-13679.
http://dx.doi.org/10.1021/j100102a038

[16]   Litter, M.I. and Navío, J.A. (1996) Photocatalytic Properties of Iron-Doped Titania Semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 98, 171-181.

[17]   Khan, M.A., Woo, S.I. and Yang, O.B. (2008) Hydrothermally Stabilized Fe(III) Doped Titania Active under Visible Light for Water Splitting Reaction. International Journal of Hydrogen Energy, 33, 5345-5351.
http://dx.doi.org/10.1016/j.ijhydene.2008.07.119

[18]   Zhu, J.F., Deng, Z.G., Chen, F., Zhang, J.L., Chen, H.J., Anpo, M., Huang, J.Z. and Zhang, L.Z. (2006) Hydrothermal Doping Method for Preparation of Cr3+-TiO2 Photocatalysts with Concentration Gradient Distribution of Cr3+. Applied Catalysis B: Environmental, 62, 329-335.
http://dx.doi.org/10.1016/j.apcatb.2005.08.013

[19]   Xu, S.P., Ng, J.W., Zhang, X.W., Bai, H.W. and Sun, D.D. (2010) Fabrication and Comparison of Highly Efficient Cu Incorporated TiO2 Photocatalyst for Hydrogen Generation from Water. International Journal of Hydrogen Energy, 35, 5254-5261.
http://dx.doi.org/10.1016/j.ijhydene.2010.02.129

[20]   Radecka, M., Rekas, M., Trenczek-Zajac, A. and Zarrzewska, K. (2008) Importance of the Band Gap Energy and Flat Band Potential for Application of Modified TiO2 Photoanodes in Water Photolysis. Journal of Power Sources, 181, 46-55.
http://dx.doi.org/10.1016/j.jpowsour.2007.10.082

[21]   Hajjaji, A., Gaidi, M., Bessais, B. and El Khakani, M.A. (2011) Effect of Cr Incorporation on the Structural and Optoelectronic Properties of TiO2:Cr Deposited by Means of a Magnetron Co-Sputtering Process. Applied Surface Science, 257, 10351-10357.
http://dx.doi.org/10.1016/j.apsusc.2011.06.072

[22]   Jellison Jr., G.E. and Modine, F.A. (1996) Parameterization of the Optical Functions of Amorphous Materials in the Interband Region. Applied Physics Letters, 69, 371-373.
http://dx.doi.org/10.1063/1.118064

[23]   Raj, K.J.A. and Viswanathan, B. (2009) Effect of Surface Area, Pore Volume and Particle Size of P25 Titania on the Phase Transformation of Anatase to Rutile. Indian Journal of Chemistry, 48A, 1378-1382.

[24]   Pighini, C. (2006) Doctoral Thesis, University of Burgundy, Paris.

[25]   Luu, C.L., Nguyen, Q.T. and Ho, S.T. (2010) Synthesis and Characterization of Fe-Doped TiO2 Photocatalyst by the Sol-Gel Method. Advances in Natural Sciences: Nanoscience and Nanotechnology, 1, 015008-015012.
http://dx.doi.org/10.1088/2043-6254/1/1/015008

[26]   Singh, D., Singh, N., Sharma, S.D., Kant, C., Sharma, C.P., Pandey, R.R. and Saini, K.K. (2011) Bandgap Modification of TiO2 Sol-Gel Films by Fe and Ni Doping. Journal of Sol-Gel Science and Technology, 58, 269-276.
http://dx.doi.org/10.1007/s10971-010-2387-2

[27]   Arushanov, E., Levcenko, S., Syrbu, N., Tezlevan, V., Merino, M. and Leon, M. (2006) Urbach’s Tail in the Absorption Spectra of CuIn5S8 and CuGa3Se5 Single Crystals. Physica Status Solidi (a), 203, 2909-2912.

[28]   Sharma, P. and Katyal, S.C. (2006) Influence of Replacing Se in Ge10Se90 Glassy Alloy by 50% at. Te on Optical Parameters. Journal of Ovonic Research, 2, 105-110.

[29]   Boubaker, K., Amlouk, M., Louartassi, Y. and Labiadh, H. (2013) About Unexpected Crystallization Behaviors of Some Ternary Oxide and Sulfide Ceramics within Lattice Compatibility Theory LCT Framework. Journal of the Australian Ceramics Society, 49, 115-117.

[30]   Boubaker, K. and Amlouk, M. (2013) Amorphous Ternary Ceramics Instability below 450°C: Nano-Scale Arguments from the Lattice Compatibility Theory (LCT). International Journal of Applied Ceramic Technology, 11, 1-4.
http://dx.doi.org/10.1111/ijac.12029

[31]   Leng, W.H., Liu, H., Cheng, S.A., Zhang, J.Q. and Cao, C. (2000) Kinetics of Photocatalytic Degradation of Aniline in Water over TiO2 Supported on Porous Nickel. Journal of Photochemistry and Photobiology A: Chemistry, 131, 125-132.
http://dx.doi.org/10.1016/S1010-6030(99)00232-4

[32]   Henry, C.R. (1989) On the Effect of the Diffusion of Carbon Monoxide on the Substrate during CO Oxidation on Supported Palladium Clusters. Surface Science, 223, 519-526.
http://dx.doi.org/10.1016/0039-6028(89)90678-X

[33]   Matko, I., Gaidi, M., Hazemann, J.L., Chenevier, B. and Labeau, M. (1999) Electrical Properties under Polluting Gas (CO) of Pt- and Pd-Doped Polycrystalline SnO2 Thin Films: Analysis of the Metal Aggregate Size Effect. Sensors and Actuators B, 59, 210-215.
http://dx.doi.org/10.1016/S0925-4005(99)00222-1

 
 
Top