Back
 AJAC  Vol.5 No.8 , June 2014
Factors Influencing the Photocatalytic Degradation of Reactive Yellow 145 by TiO2-Coated Non-Woven Fibers
Abstract: The photocatalytic degradation of the synthetic textile dye Reactive Yellow 145 (RY 145) in aqueous solution, using TiO2 coated non-woven fibers as photocatalyst, under UV-lamp irradiation, was studied. The effects of the operational parameters such as initial dye concentration, pH, addition of oxidant hydrogen peroxide and addition of ethanol on the reaction rate were investigated. The effect of some inorganic ions such as and , commonly present in real effluents, on the photodegradation of RY 145 was also examined. The experimental results showed that the photocatalytic degradation rate was favoured by a high concentration of solution in respect to Langmuir-Hinshelwood model. The maximum rate of complete decolorization of RY 145 was observed in the acidic medium at pH 3. The presence of and anions led to an increase of the effectiveness of the photocatalytic degradation. However, the presence of and anions decreased differently the photodegradation reaction rate. TiO2/UV process was proved to be capable of the complete degradation of the RY 145.
Cite this paper: Alahiane, S. , Qourzal, S. , El Ouardi, M. , Abaamrane, A. and Assabbane, A. (2014) Factors Influencing the Photocatalytic Degradation of Reactive Yellow 145 by TiO2-Coated Non-Woven Fibers. American Journal of Analytical Chemistry, 5, 445-454. doi: 10.4236/ajac.2014.58053.
References

[1]   Lin, S.H. and Lai, C.L. (1999) Catalytic Oxidation of Dye Wastewater by Metal Oxide Catalyst and Granular Activated Carbon. Environment International, 25, 497-504.
http://dx.doi.org/10.1016/S0160-4120(99)00015-X

[2]   Aguedach, A., Brosillon, S., Morvan, J. and Lhadi, E.K. (2008) Influence of Ionic Strength in the Adsorption and During Photocatalysis of Reactive Black 5 azo Dye on TiO2 Coated on Non Woven Paper with SiO2 as a Binder. Journal of Hazardous Materials, 150, 250-256.
http://dx.doi.org/10.1016/j.jhazmat.2007.04.086

[3]   Konstantinou, I.K. and Albanis, T.A. (2004) TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations: A Review. Applied Catalysis B: Environmental, 49, 1-14.
http://dx.doi.org/10.1016/j.apcatb.2003.11.010

[4]   Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C and Herrmann, J.-M. (2002) Photocatalytic Degradation of Various Types of Dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in Water by UV Irradiated Titania. Applied Catalysis B: Environmental, 39, 75-90.
http://dx.doi.org/10.1016/S0926-3373(02)00078-4

[5]   Zdemir, O., Armagan, B., Turan, M. and Çelik, M.S. (2004) Comparision of the Adsorption Characteristics of Azo Reactive Dyes on Mezoporous Minerals. Dyes Pigments, 62, 49-60.
http://dx.doi.org/10.1016/j.dyepig.2003.11.007

[6]   Kusvuran, E., Gulnaz, O., Irmak, S., Atanur, O.M., Yavuz, H.I. and Erbatur, O. (2004) Comparison of Several Advanced Oxidation Processes for the Decolorization of Reactive Red 120 Azo Dye in Aqueous Solution. Journal of Hazardous Materials, 109, 85-93.
http://dx.doi.org/10.1016/j.jhazmat.2004.03.009

[7]   Kusvuran, E., Irmak, S., Yavuz, H.I., Samil, A. and Erbatur, O. (2005) Comparison of Treatment Methods Efficiency on Decolorization and Mineralization of Reactive Black 5 Azo Dye. Journal of Hazardous Materials, 119, 109-116.
http://dx.doi.org/10.1016/j.jhazmat.2004.11.017

[8]   So, C.M., Cheng, M.Y., Yu, J.C. and Wong, P.K. (2002) Degradation of Azo Dye Procion Red MX-5B by Photocatalytic Oxidation. Chemosphere, 46, 905-912.
http://dx.doi.org/10.1016/S0045-6535(01)00153-9

[9]   Grzechulska, J. and Morawski, A.W. (2002) Photocatalytic Decomposition of Azo-Dye Acid Black 1 in Water over Modified Titanium Dioxide. Applied Catalysis B: Environmental, 36, 45-51.
http://dx.doi.org/10.1016/S0926-3373(01)00275-2

[10]   Mashkoura, M.S., Al-Kaimb, A.F., Ahmed, L.M. and Hussein, F.H. (2011) Zinc Oxide Assisted Photocatalytic Decolorization of Reactive Red 2 Dye. International Journal of Chemical Sciences, 9, 969-979.

[11]   Maasoomeh, K., Nezameddin, D. and Soodabeh, S. (2010) Heterogeneos Photocatalytic Decolorization of Brown NG by TiO2-UV Process. Iranian Journal of Chemistry & Chemical Engineering, 29, 19-26.

[12]   Vautier, M., Guillard, C. and Herrmann, J.M. (2001) Photocatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine. Journal of Catalysis, 201, 46-59.
http://dx.doi.org/10.1006/jcat.2001.3232

[13]   Zielinska, B., Grzechulska, J., Grzmil, B. and Morawski, A.W. (2003) The pH Influence on Photocatalytic Decomposition of Organic Dyes over A11 and P25 Titanium Dioxide. Applied Catalysis B: Environmental, 45, 293-300.
http://dx.doi.org/10.1016/S0926-3373(03)00178-4

[14]   Hachem, C., Bocquillon, F., Zahraa, O. and Bouchy, M. (2001) Decolorization of Textile Industry Wastewater by the Photocatalytic Degradation Process. Dyes Pigments, 49, 117-125.
http://dx.doi.org/10.1016/S0143-7208(01)00014-6

[15]   Noorjahan, M., Reddy, M.P., Kumari, V.D., Lavedrine, B., Boule, P. and Subrahmanyan, M. (2003) Photocatalytic Degradation of H-Acid over a Novel TiO2 Thin Film Fixed Bed Reactor and in Aqueous Suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 156, 179-187.
http://dx.doi.org/10.1016/S1010-6030(02)00408-2

[16]   Barka, N., Qourzal, S., Assabbane, A., Nounah, A. and Ait-Ichou, Y. (2010) Photocatalytic Degradation of an Azo Reactive Dye, Reactive Yellow 84, in Water Using an Industrial Titanium Dioxide Coated Media. Arabian Journal of Chemistry, 3, 279-283.
http://dx.doi.org/10.1016/j.arabjc.2010.06.016

[17]   Elatmani, K., Afanga, H., Qourzal, S., Assabbane, A., Ait-Ichou, Y., Costa Pereira, J. and Emilia Azenha, M. (2011) Photocatalytic Degradation of Two Insecticides Lannate and Carbaryl with Supported TiO2. Annales de Chimie-Science des Matériaux, 35, 269-282.
http://dx.doi.org/10.3166/acsm.35.269-282

[18]   Grzechulska, J. and Morawski, A.W. (2002) Photocatalytic De-composition of Azo-Dye Acid Black 1 in Water over Modified Titanium Dioxide. Applied Catalysis B: Environmental, 36, 45-51.
http://dx.doi.org/10.1016/S0926-3373(01)00275-2

[19]   Vulliet, E., Chovelon, J.M., Guillard, C. and Herrmann, J.M. (2003) Factors Influencing the Photocatalytic Degradation of Sulfonylurea Herbicides by TiO2 Aqueous Suspension. Journal of Photochemistry and Photobiology A: Chemistry, 159, 71-79.
http://dx.doi.org/10.1016/S1010-6030(03)00108-4

[20]   Herrmann, J.M. (1995) Heterogeneous Photocatalysis: An Emerging Discipline Involving Multiphase Systems. Catalysis Today, 24, 157-164.
http://dx.doi.org/10.1016/0920-5861(95)00005-Z

[21]   Robert, D. and Malato, S. (2002) Solar Photocatalysis: A Clean Process for Water Detoxification. The Science of the Total Environment, 291, 85-97.
http://dx.doi.org/10.1016/S0048-9697(01)01094-4

[22]   D’Oliveira, J.C., Al-Sayyed, G. and Pichat, P. (1990) Photodegradation of 2- and 3-Chlorophenol in TiO2 Aqueous Suspensions. Environmental Science and Technology, 24, 990-996.
http://dx.doi.org/10.1021/es00077a007

[23]   Barka, N., Qourzal, S., Assabbane, A. and Ait-Ichou, Y. (2010) Kinetic Modeling of the Photocatalytic Degradation of Methyl Orange by Supported TiO2. Journal of Environmental Science and Engineering, 4, 1-5.

[24]   Guillard, C., Lacheb, H., Houas, A., Ksibi, M., Elaloui, E. and Herrmann, J.M. (2003) Influence of Chemical Structure of Dyes, of pH and of Inorganic Salts on Their Photocatalytic Degradation by TiO2 Comparison of the Efficiency of Powder and Supported TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 158, 27-36.
http://dx.doi.org/10.1016/S1010-6030(03)00016-9

[25]   Senthilkumaar, S. and Porkodi, K. (2005) Heterogeneous Photocatalytic Decomposition of Crystal Violet in UV Illuminated Sol-Gel Derived Nanocrystalline TiO2 Suspension. Journal of Colloid and Interface Science, 288, 184-189.
http://dx.doi.org/10.1016/j.jcis.2005.02.066

[26]   Liu, C.C., Hsieh, Y.H., Lai, P.F., Li, C.H. and Kao, C.L. (2006) Photodegradation Treatment of Azo Dye Wastewater by UV/TiO2 Process. Dyes Pigments, 68, 191-195.
http://dx.doi.org/10.1016/j.dyepig.2004.12.002

[27]   Zhao, H., Xu, S., Zhong, J. and Bao, X. (2004) Kinetic Study on the Photocatalytic Degradation of Pyridine in TiO2 Suspension Systems. Cataylsis Today, 93-95, 857-861.
http://dx.doi.org/10.1016/j.cattod.2004.06.086

[28]   Qourzal, S., Tamimi, M., Assabbane, A. and Ait-Ichou, Y. (2005) Photocatalytic Degradation and Adsorption of 2-Naphthol on Suspended TiO2 Surface in a Dynamic Reactor. Journal of Colloid and Interface Science, 286, 621-626.
http://dx.doi.org/10.1016/j.jcis.2005.01.046

[29]   Kansal, S.K., Kaur, N. and Singh, S. (2009) Photocatalytic Degradation of Two Commercial Reactive Dyes in Aqueous Phase Using Nanophotocatalysts. Nanoscale Research Letters, 4, 709-716.
http://dx.doi.org/10.1007/s11671-009-9300-3

[30]   Barka, N., Assabbane, A., Nounah, A. and Ait-Ichou, Y. (2008) Photocatalytic Degradation of Indigo Carmine in Aqueous Solution by TiO2-Coated Non-Woven Fibers. Journal of Hazardous Materials, 152, 1054-1059.
http://dx.doi.org/10.1016/j.jhazmat.2007.07.080

[31]   Rauf, M.A. and Ashraf, S.S. (2009) Fundamental Principles and Application of Heterogeneous Photocatalytic Degradation of Dyes in Solution. Chemical Engineering Journal, 151, 10-18.
http://dx.doi.org/10.1016/j.cej.2009.02.026

[32]   Qourzal, S., Tamimi, M., Assabbane, A. and Ait-Ichou, Y. (2007) TiO2 Photocatalytic Mineralization of β-Naphthol: Influence of Some Inorganic Ions, Ethanol, and Hydrogen Peroxide. Comptes Rendus Chimie, 10, 1187-1194.
http://dx.doi.org/10.1016/j.crci.2007.06.011

[33]   Muruganandham, M., Sobana, N. and Swaminathan, M. (2006) Solar Assisted Photocatalytic and Photochemical Degradation of Reactive Black 5. Journal of Hazardous Materials, 137, 1371-1376.
http://dx.doi.org/10.1016/j.jhazmat.2006.03.030

[34]   Saien, J., Delavari, H. and Solymani, A.R. (2010) Sono-Assisted Photocatalytic Degradation of Styrene Acrylic Acid Copolymer in Aqueous Media with Nano Titania Particles and Kinetic Studies. Journal of Hazardous Materials, 177, 1031-1038.
http://dx.doi.org/10.1016/j.jhazmat.2010.01.024

[35]   Djokic, V., Vujovic, J., Marinkovic, A., Petrovic, R., Janackovic, D., Onjia, A. and Mijin, D. (2012) A Study of the Photocatalytic Degradation of the Textile Dye CI Basic Yellow 28 in Water Using a P160 TiO2-Based Catalyst. Journal of the Serbian Chemical Society, 77, 1747-1757.
http://dx.doi.org/10.2298/JSC121015130D

[36]   Barka, N., Qourzal, S., Assabbane, A., Nounah, A. and Ait-Ichou, Y. (2008) Factors Influencing the Photocatalytic Degradation of Rhodamine B by TiO2-Coated Non-Woven Paper. Journal of Photochemistry and Photobiology A: Chemistry, 195, 346-351.
http://dx.doi.org/10.1016/j.jphotochem.2007.10.022

[37]   Ohno, T., Sarukawa, K., Tokieda, K. and Matsumura, M. (2001) Morphology of a TiO2 Photocatalyst (Degussa P-25) Consisting of Anatase and Rutile Crystalline Phases. Journal of Catalysis, 203, 82-86.
http://dx.doi.org/10.1006/jcat.2001.3316

[38]   Qourzal, S., Barka, N., Belmouden, M., Abaamrane, A., Alahiane, S., El Ouardi, M., Assabbane, A. and Ait-Ichou, Y. (2012) Heterogeneous Photocatalytic Degradation of 4-Nitrophnol on Suspended Titania Surface in a Dynamic Photo-reactor. Fresenius Environmental Bulletin, 21, 1972-1981.

[39]   Lucas Vas, J.L., Boussaoud, A., Ait-Ichou, Y. and Petit-Ramel, M. (1998) Photominéralisation de l’uracile et des 5-halogeno-uraciles sur le dioxyde de titane. Effet du pH et de quelques anions sur la photodégradation de l’uracile. Analusis, 26, 83-87.
http://dx.doi.org/10.1051/analusis:1998115

 
 
Top