[1] Finetti, B.D. (1957) Su un’impostazion alternativa dell teoria collecttiva del rischio. Transactions of the 15th International Congress of Actuaries, 2, 433-443.
[2] Gerber, H.U. (1969) Entscheidungskriterien für den zusammengesetzten Poisson-Prozess. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker, 69, 185-227.
[3] Azcue, P. and Muler, N. (2005) Optimal Reinsurance and Dividend Distribution Policies in the Cramér-Lundberg Model. Mathematical Finance, 15, 261-308.
http://dx.doi.org/10.1111/j.0960-1627.2005.00220.x
[4] Albrecher, H. and Thonhauser, S. (2008) Optimal Dividend Strategies for a Risk Process under Force of Interest. Insurance: Mathematics and Economics, 43, 134-149.
http://dx.doi.org/10.1016/j.insmatheco.2008.03.012
[5] Avram, F., Palmowski, Z. and Pistorius, M.R. (2007) On the Optimal Dividend Problem for a Spectrally Negative Lévy Process. The Annals of Applied Probability, 17, 156-180.
http://dx.doi.org/10.1214/105051606000000709
[6] Loeffen, R. (2008) On Optimality of the Barrier Strategy in de Finetti’s Dividend Problem for Spectrally Negative Lévy Processes. The Annals of Applied Probability, 18, 1669-1680.
http://dx.doi.org/10.1214/07-AAP504
[7] Kyprianou, A.E., Rivero, V. and Song, R. (2010) Convexity and Smoothness of Scale Functions with Applications to de Finetti’s Control Problem. Journal of Theoretical Probability, 23, 547-564.
http://dx.doi.org/10.1007/s10959-009-0220-z
[8] Yin, C.C. and Wang, C.W. (2009) Optimality of the Barrier Strategy in de Finetti’s Dividend Problem for Spectrally Negative Lévy Processes: An Alternative Approach. Journal of Computational and Applied Mathematics, 233, 482491.
http://dx.doi.org/10.1016/j.cam.2009.07.051
[9] Loeffen, R. and Renaud, J.F. (2010) De Finetti’s Optimal Dividends Problem with an Affine Penalty Function at Ruin. Insurance: Mathematics and Economics, 46, 98-108.
http://dx.doi.org/10.1016/j.insmatheco.2009.09.006
[10] Azcue, P. and Muler, N. (2010) Optimal Investment Policy and Dividend Payment Strategy in an Insurance Company. The Annals of Applied Probability, 20, 1253-1302.
http://dx.doi.org/10.1214/09-AAP643
[11] Chiu, S.N. and Yin, C.C. (2003) The Time of Ruin the Surplus Prior to Ruin and the Deficit at Ruin for the Classical Risk Process Perturbed by Diffusion. Insurance: Mathematics and Economics, 33, 59-66.
http://dx.doi.org/10.1016/S0167-6687(03)00143-4
[12] Minkova, L.D. (2004) The Pólya-Aeppli Process and Ruin Problems. Journal of Applied Mathematics and Stochastic Analysis, 3, 221-234.
http://dx.doi.org/10.1155/S1048953304309032
[13] Mao, Z.C. and Liu, J.E. (2005) A Risk Model and Ruin Probability with Compound Poisson-Geometric Process. Acta Mathematicae Applicatae Sinica, 28, 419-428. (in Chinese)
[14] Quenouille, M.H. (1949) A Relation between the Logarithmic, Poisson, and Negative Binomial Series. Biometrics, 5, 162-164.
http://dx.doi.org/10.2307/3001917
[15] Willmot, G.E. and Lin, X.S. (2001) Lundberg Approximations for Compound Distributions with Insurance Applications. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4613-0111-0
[16] Van Harn, K. (1978) Classifying Infinitely Divisible Distributions by Functional Equations. CWI, Amsterdam.
[17] Hansen, B.G. and Willekens, E. (1990) The Generalized Logarithmic Series Distribution. Statistics & Probability Letters, 9, 311-316.
http://dx.doi.org/10.1016/0167-7152(90)90138-W
[18] Chiu, S.N. and Yin, C.C. (2014) On the Complete Monotonicity of the Compound Geometric Convolution with Applications to Risk Theory. Scandinavian Actuarial Journal, 2014, 116-124.
http://dx.doi.org/10.1080/03461238.2011.647061
[19] Shanthikumar, J.G. (1988) DFR Property of First Passage Times and Its Preservation under Geometric Compounding. The Annals of Probability, 16, 397-406.
http://dx.doi.org/10.1214/aop/1176991910
[20] Esary, J.D. and Marshall, A.W. (1973) Shock Models and Wear Processes. The Annals of Probability, 1, 627-649.
http://dx.doi.org/10.1214/aop/1176996891