JMP  Vol.5 No.8 , May 2014
Simulation of the Temperature Dependence of the Density of States in a Strong Magnetic Field
ABSTRACT

The temperature dependence of the density of states in strong magnetic fields. On the basis of the model constructed, a computer program calculating the density of electronic states in a quantizing magnetic field. Used new, based on quantum statistics, the approach to the calculation of the temperature dependence of the density of states in a strong magnetic field. Mathematical modeling of the density of states using the experimental values of a continuous density of states makes it possible to calculate the Landau levels.


Cite this paper
Gulyamov, G. , Erkaboev, U. and Sharibaev, N. (2014) Simulation of the Temperature Dependence of the Density of States in a Strong Magnetic Field. Journal of Modern Physics, 5, 680-685. doi: 10.4236/jmp.2014.58079.
References
[1]   Tsidilkovsky, I.M. (1972) Electrons and Holes in Semiconductors. Nauka, Moscow.

[2]   Bagraev, N.T., Brilinskaya, E.S., Gets, D.S., Klyachkin, L.E., Malyarenko, A.M. and Romanov, V.V. (2011) FTP (Fizika Technika Poluprovodnikov), 45, 1503-1508.

[3]   Bagraev, N.T., Brilinskaya, E.S., Danilovsky, E.Yu., Klyachkin, L.E., Malyarenko, A.M. and Romanov, V.V. (2012) FTP (Fizika Technika Poluprovodnikov), 46, 90-95.

[4]   Gulyamov, G., Sharibaev, N.Yu. and Erkaboev, U.I. (2013) Physical Surface Engineering, 11, 289-292.

[5]   Gulyamov, G. and Sharibaev, N.Yu. (2011) FTP (Fizika Technika Poluprovodnikov), 45, 178-182.

[6]   Gulyamov, G., Sharibaev, N.Yu. and Erkaboev, U.I. (2013) FIP (Fizicheckaya Injeneriya Poverkhnosti), 11, 195-198.

[7]   Gulyamov, G., Karimov, I.N., Sharibaev, N.Yu. and Erkaboev, U.I. (2010) Uzbek Journal of Physics, 12, 143-146.

[8]   Ziman, J. (1974) Principles of the Theory of Solids. Wiley, New York.

[9]   Brandt, N.B. and Kulbachinsky, V.A. (2007) Quasiparticles in Condensed Matter Physics. Fizmatlit, Moscow.

[10]   Lifshitz, I.M., Gredeskul, S.A. and Pastur, N.A. (1982) Introduction to the Theory of Disordered Systems. Nauka, Moscow.

[11]   Ravich, Yu.I. (1968) Journal de Physique, 4, 114-124.

 
 
Top