[1] Jobbágy, E.G. and Jackson, R.B. (2000) The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation. Ecological Applications, 10, 423-436.
http://dx.doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
[2] Liski, J., Perruchoud, D. and Karjalainen, T. (2002) Increasing Carbon Stocks in the Forest Soils of Western Europe. Forest Ecology and Management, 169, 159-175. http://dx.doi.org/10.1016/S0378-1127(02)00306-7
[3] McGuire, K.L. and Treseder, K.K. (2010) Microbial Communities and Their Relevance for Ecosystem Models: Decomposition as a Case Study. Soil Biology & Biochemistry, 42, 529-535.
http://dx.doi.org/10.1016/j.soilbio.2009.11.016
[4] Prescott, C.E. (2010) Litter Decomposition: What Controls It and How Can We Alter It to Sequester More Carbon in Forest Soils? Biogeochemistry, 101, 133-149. http://dx.doi.org/10.1007/s10533-010-9439-0
[5] Trofymow, J.A., Moore, T.R., Titus, B., Prescott, C., Morrison, I., Siltanen, M., et al. (2002) Rates of Litter Decomposition over 6 Years in Canadian Forests: Influence of Litter Quality and Climate. Canadian Journal of Forest Research, 32, 789-804. http://dx.doi.org/10.1139/x01-117
[6] Powers, J.S., Montgomery, R.A., Adair, E.C., Brearly, F.Q., Dewalt, S.J., Castanho, C.T., et al. (2009) Decomposition in Tropical Forests: A Pan-Tropical Study of the Effects of Litter Type, Litter Placement and Mesofaunal Exclusion across a Precipitation Gradient. Journal of Ecology, 97, 801-811. http://dx.doi.org/10.1111/j.1365-2745.2009.01515.x
[7] Kirschbaum, M.U.F. (2010) The Temperature Dependence of Organic Matter Decomposition: Seasonal Temperature Variations Turn a Sharp Short-Term Temperature Response into a More Moderate Annually Averaged Response. Global Change Biology, 16, 2117-2129.
http://dx.doi.org/10.1111/j.1365-2486.2009.02093.x
[8] Zhang, D., Hui, D., Luo, Y. and Zhou, G. (2008) Rates of Litter Decomposition in Terrestrial Ecosystems: Global Patterns and Controlling Factors. Journal of Plant Ecology, 1, 85-93.
http://dx.doi.org/10.1093/jpe/rtn002
[9] Kayranli, B., Scholz, M. and Mustafa, A. (2010) Carbon Storage and Fluxes within Freshwater Wetlands: A Critical Review. Wetlands, 30, 111-124. http://dx.doi.org/10.1007/s13157-009-0003-4
[10] Mitsch, W.J. and Gosselink, J.G. (2007) Wetlands. John Wiley & Sons, Hoboken.
[11] Kuehn, K.A., Lemke, M.J., Suberkropp, K. and Wetzel, R.G. (2000) Microbial Biomass and Production Associated with Decaying Leaf Litter of the Emergent Macrophyte. Juncus effuses. Limnology and Oceanogrophy, 45, 862-870.
http://dx.doi.org/10.4319/lo.2000.45.4.0862
[12] Reith, F., Drake, H.L. and Kusel, K. (2002) Anaerobic Activities of Bacteria and Fungi in Moderately Acidic Conifer and Deciduous Leaf Litter. FEMS Microbiology Ecology, 41, 27-35.
http://dx.doi.org/10.1111/j.1574-6941.2002.tb00963.x
[13] Buesing, N. and Gessner, M.O. (2006) Benthic Bacterial and Fungal Productivity and Carbon Turnover in a Freshwater Marsh. Applied and Environmental Microbiology, 72, 596-605.
http://dx.doi.org/10.1128/AEM.72.1.596-605.2006
[14] Su, R., Lohner, R.N., Kuehn, K.A., Sinsabaugh, R. and Neely, R.K. (2007) Microbial Dynamics Associated with Decomposing Typha angustifolia Litter in Two Contrasting Lake Erie Coastal Wetlands. Aquatic Microbial Ecology, 46, 295-307. http://dx.doi.org/10.3354/ame046295
[15] Strickland, M.S. and Rousk, J. (2010) Considering Fungal: Bacterial Dominance in Soils—Methods, Controls, and Ecosystem Implications. Soil Biology & Biochemistry, 42, 1385-1395.
http://dx.doi.org/10.1016/j.soilbio.2010.05.007
[16] Chapin III, F.S., Matson, P.A. and Mooney, H.A. (2002) Principles of Terrestrial Ecosystem Ecology. Springer, New York.
[17] de Boer, W., Folman, L.B., Summerbell, R.C. and Boddy, L. (2005) Living in a Fungal World: Impact of Fungi on Soil Bacterial Niche Development. FEMS Microbiology Reviews, 29, 795-811.
http://dx.doi.org/10.1016/j.femsre.2004.11.005
[18] Poll, C., Marhan, S., Ingwersen, J. and Kandeler, E. (2008) Dynamics of Litter Carbon Turnover and Microbial Abundance in a Rye Detritusphere. Soil Biology & Biochemistry, 40, 1306-1321.
http://dx.doi.org/10.1016/j.soilbio.2007.04.002
[19] Dilly, O. and Irmler, U. (1998) Succession in the Food Web during the Decomposition of Leaf Litter in a Black Alder (Alnus glutinosa (Gaertn.) L.) Forest. Pedobiologia, 422, 109-123.
[20] Velvis, H. (1997) Evaluation of the Selective Respiratory Inhibition Method for Measuring the Ratio of Fungal: Bacterial Activity in Acid Agricultural Soils. Biology and Fertility of Soils, 25, 354-360.
http://dx.doi.org/10.1007/s003740050325
[21] Ananyeva, N.D., Susyan, E.A., Chernova, O.V., Chernov, I.Y. and Makarova, O.L. (2006) The Ratio of Fungi and Bacteria in the Biomass of Different Types of Soil Determined by Selective Inhibition. Microbiology, 75, 702-707.
http://dx.doi.org/10.1134/S0026261706060130
[22] Liu, W.T., Marsh, T.L., Cheng, H. and Forney, L.J. (1997) Characterization of Microbial Diversity by Determining Terminal Restriction Fragment Length Polymorphisms of Genes Encoding 16S rRNA. Applied and Environmental Microbiology, 63, 4516-4522.
[23] Hayashi, H., Sakamoto, M. and Benno, Y. (2002) Fecal Microbial Diversity in a Strict Vegetarian as Determined by Molecular Analysis and Cultivation. Microbiology and Immunology, 46, 819-831.
http://dx.doi.org/10.1111/j.1348-0421.2002.tb02769.x
[24] Hanson, C.A., Allison, S.D., Bradford, M.A., Wallenstein, M.D. and Treseder, K.K. (2008) Fungal Taxa Target Different Carbon Sources in Forest Soil. Ecosystems, 11, 1157-1167.
http://dx.doi.org/10.1007/s10021-008-9186-4
[25] Campbell, A.H., Meritt, D.W., Franklin, R.B., Boone, E.L., Nicely, C.T. and Brown, B.L. (2011) Effects of Age and Composition of Field-Produced Biofilms on Oyster Larval Setting. Biofouling: The Journal of Bioadhesion and Biofilm Research, 27, 255-265. http://dx.doi.org/10.1080/08927014.2011.560384
[26] Olson, J.T. (1963) Energy Storage and the Balance of Producers and Decomposers in Ecological Systems. Ecology, 44, 322-331. http://dx.doi.org/10.2307/1932179
[27] Mantel, N. (1967) The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Research, 27, 209-220.
[28] Hammer, O., Harper, D.A.T. and Ryan, P.D. (2001) PAST: Palaeontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
[29] Battle, J.M. and Golladay, S.W. (2001) Hydroperiod Influence on Breakdown of Leaf Litter in Cypress-Gum Wetlands. The American Midland Naturalist, 146, 128-145.
http://dx.doi.org/10.1674/0003-0031(2001)146[0128:HIOBOL]2.0.CO;2
[30] Day, F.P. (1982) Litter Decomposition Rates in the Seasonally Flooded Dismal Swamp. Ecology, 63, 670-678.
http://dx.doi.org/10.2307/1936787
[31] Aerts, R. (1997) Climate, Leaf Litter Chemistry and Leaf Litter Decomposition in Terrestrial Ecosystems: A Triangular Relationship. Oikos, 79, 439-449. http://dx.doi.org/10.2307/3546886
[32] Blair, J.M., Parmelee, R.W. and Beare, M.H. (1990) Decay Rates, Nitrogen Fluxes, and Decomposer Communities of Single-and Mixed-Species Foliar Litter. Ecology, 71, 1976-1985.
http://dx.doi.org/10.2307/1937606
[33] Berg, B. and McClaugherty, C. (2008) Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer Verlag, Berlin. http://dx.doi.org/10.1007/978-3-540-74923-3
[34] Davis, C.B. and van der Valk, A.V. (1978) The Decomposition of Standing and Fallen Litter of Typha glauca and Scirpus fluviatilis. Canadian Journal of Botany, 56, 662-675. http://dx.doi.org/10.1139/b78-073
[35] Reddy, K.R. and DeLaune, R.D. (2008) Biogeochemistry of Wetlands: Science and Applications. CRC Press, Boca Raton. http://dx.doi.org/10.1201/9780203491454
[36] Doi, R.H. and Kosugi, A. (2004) Cellulosomes: Plant-Cell-Wall-Degrading Enzyme Complexes. Nature Reviews Microbiology, 2, 541-551. http://dx.doi.org/10.1038/nrmicro925
[37] Fontaine, S., Mariotti, A. and Abbadie, L. (2003) The Priming Effect of Organic Matter: A Question of Microbial Competition? Soil Biology & Biochemistry, 35, 837-843. http://dx.doi.org/10.1016/S0038-0717(03)00123-8
[38] Rovira, P. and Vallejo, V.R. (2002) Labile and Recalcitrant Pools of Carbon and Nitrogen in Organic Matter Decomposing at Different Depths in Soil: An Acid Hydrolysis Approach. Geoderma, 107, 109-141.
http://dx.doi.org/10.1016/S0016-7061(01)00143-4