Back
 MSA  Vol.5 No.7 , May 2014
Titanium Oxide Nanorods pH Sensors: Comparison between Voltammetry and Extended Gate Field Effect Transistor Measurements
Abstract:
In recent years there has increased interest in the characterization of titanium oxide nanorods for application in analytical devices. The titanium oxide nanorods (NRTiO) were obtained by hydrothermal reaction with a NaOH solution heated in the autoclave at 150°C for up to 50 h. Experimental data indicate that the prepared nanorods consist of anatase and rutile phases, with a possible interlayer structure. The NRTiO was investigated as pH sensor in the pH range 2 - 12, and the extended gate field effect transistor (EGFET) configuration presented a sensitivity of 49.6 mV/pH. Voltammetric data showed a sensitivity of 47.8 mV/pH. These results indicate that the material is a promising candidate for applications as an EGFET-pH sensor and as a disposable biosensor in the future.
Cite this paper: Guerra, E. and Mulato, M. (2014) Titanium Oxide Nanorods pH Sensors: Comparison between Voltammetry and Extended Gate Field Effect Transistor Measurements. Materials Sciences and Applications, 5, 459-466. doi: 10.4236/msa.2014.57049.
References

[1]   Miao, Z., Xu, D., Ouyang, J., Guo, G., Zhao, X. and Tang, Y. (2002) Electrochemically Induced Sol-Gel Preparation of Single-Crystalline TiO2 Nanowires. Nano Letters, 2, 717-720.
http://dx.doi.org/10.1021/nl025541w

[2]   Limmer, S.J., Chou, T.P. and Cao, G.Z. (2004) A Study on the Growth of TiO2 Nanorods Using Sol Electrophoresis. Journal of Material Science, 39, 895-901.
http://dx.doi.org/10.1023/B:JMSC.0000012919.21763.b2

[3]   Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K. (1998) Formation of Titanium Oxide Nanotube. Langmuir, 14, 3160-3163.
http://dx.doi.org/10.1021/la9713816

[4]   Liu, A., Wei, M., Honma, I. and Zhou, H. (2006) Biosensing Properties of Titanate Nanotube Films: Selective Detection of Dopamine in the Presence of Ascorbate and Uric Acid. Advanced Functional Materials, 16, 371-376.
http://dx.doi.org/10.1002/adfm.200500202

[5]   Winquist, F. and Danielsson, B. (1990) Biosensors, A Practical Approach-Semiconductor Devices, Oxford University Press, Oxford.

[6]   Vonau, W. and Guth, U. (2006) pH Monitoring: A Review. Journal of Solid State Electrochemistry, 10, 746-752.
http://dx.doi.org/10.1007/s10008-006-0120-4

[7]   Miao, Y.Q., Chen, J.R., and Fang, K.M. (2005) New Technology for the Detection of pH. Journal Biochemical and Biophysical Methods, 63, 1-9.
http://dx.doi.org/10.1016/j.jbbm.2005.02.001

[8]   Bergveld, P. (2003) Thirty Years of Isfetology: What Happened in the Past 30 Years and What May Happen in the Next 30 Years. Sensors and Actuators B: Chemical, 88, 1-20.
http://dx.doi.org/10.1016/S0925-4005(02)00301-5

[9]   Chou, J.-C., Chiang, J.-L. and Wu, C.-L. (2005) pH and Procaine Sensing Characteristics of Extended-Gate Field-Effect Transistor Based on Indium Tin Oxide Glass. Japanese Journal Applied Physics, 44, 4838-4842.
http://dx.doi.org/10.1143/JJAP.44.4838

[10]   Chou, J.C. and Tzeng, D.J. (2006) Study on the Characteristics of the Ruthenium Oxide pH Electrode. Rare Metal Materials and Engineering, 35, 256-258.

[11]   Silva, G.R., Matsubara, E.Y., Corio, P., Roselen, J.M. and Mulato, M. (2007) Carbon Felt/Carbon Nanotubes/Pani as pH Sensor. Materials Research Society Proceedings, Spring Meeting, 1018, EE1410-EE1411.
http://dx.doi.org/10.1557/PROC-1018-EE14-10

[12]   Batista, P.D., Mulato, M., Graeff, C.F.D., Fernandez, F.J.R. and Marques, F.D. (2006) SnO2 Extended Gate Field-Effect Transistor as pH Sensor. Brazilian Journal of Physics, 36, 478-481.
http://dx.doi.org/10.1590/S0103-97332006000300066

[13]   Liao, H.-K., Chou, J.-C., Chung, W.-Y., Sun, T.-P. and Hsiung, S.-K. (1998) Study of Amorphous Tin Oxide Thin Films for ISFET Applications. Sensors and Actuators B: Chemical, 50, 104-109.
http://dx.doi.org/10.1016/S0925-4005(98)00162-2

[14]   Batista, P.D. and Mulato, M. (2005) ZnO Extended-Gate Field-Effect Transistors as pH Sensors. Applied Physics Letters, 87, 143508-143510.
http://dx.doi.org/10.1063/1.2084319

[15]   Guerra, E.M. and Mulato, M. (2009) Synthesis and Characterization of Vanadium Oxide/Hexadecylamine Membrane and Its Application as pH-EGFET Sensor. Journal of Sol-Gel Science and Technology, 52, 315-320.
http://dx.doi.org/10.1007/s10971-009-2062-7

[16]   Guerra, E.M., Silva, G.R. and Mulato, M. (2009) Extended Gate Field Effect Transistor Using V2O5 Xerogel Sensing Membrane by Sol-Gel Method. Solid State Science, 11, 456-460.
http://dx.doi.org/10.1016/j.solidstatesciences.2008.07.014

[17]   Guidelli, E.J., Guerra, E.M. and Mulato, M. (2011) Ion Sensing Properties of Vanadium/Tungsten Mixed Oxides. Materials Chemistry and Physics, 125, 833-837.
http://dx.doi.org/10.1016/j.matchemphys.2010.09.040

[18]   Guidelli, E.J., Guerra, E.M. and Mulato, M. (2012) V2O5/WO3 Mixed Oxide Films as pH-EGFET Sensor: Sequential Re-Usage and Fabrication Volume Analysis. ECS Journal Solid State Science and Technology, 1, N39-N44.
http://dx.doi.org/10.1149/2.007203jss

[19]   Diebold, U. (2003) The Surface Science of Titanium Dioxide. Surface Science Reports, 48, 53-229.

[20]   Zhang, Y.X., Li, G.H., Jin, Y.X., Zhang, Y., Zhang, J. and Zhang, L.D. (2002) Hydrothermal Synthesis and Photoluminescence of TiO2 Nanowires. Chemical Physics Letters, 365, 300-304.
http://dx.doi.org/10.1149/2.007203jss

[21]   Ross, C. (2001) Patterned Magnetic Recording Media. Annual Review of Materials Research, 31, 203-235.
http://dx.doi.org/10.1146/annurev.matsci.31.1.203

[22]   Li, W., Ni, C., Lin, H., Huang, C.P. and Shah, S.I. (2004) Size Dependence of Thermal Stability of TiO2 Nanoparticles. Journal of Applied Physics, 96, 6663-6668.
http://dx.doi.org/10.1063/1.1807520

[23]   Wang, J., Sun, J. and Bian, X. (2004) Preparation of Oriented TiO2 Nanobelts by Microemulsion Technique. Materials Science and Engineering: A, 379, 7-10.
http://dx.doi.org/10.1016/S0921-5093(03)00625-7

[24]   Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y. and Peng, L.M. (2001) Preparation and Structure Analysis of Titanium Oxide Nanotubes. Applied Physics Letters, 79, 3702-3704.
http://dx.doi.org/10.1063/1.1423403

[25]   Chen, Y.F., Lee, C.Y., Tao, Z.L., Yeng, M.Y. and Chiu, H.T. (2003) Titanium Disulfide Nanotubes as Hydrogen-Storage Materials. Journal of the American Chemical Society, 125, 5284-5285.
http://dx.doi.org/10.1021/ja034601c

[26]   Chen, Y.F., Lee, C.Y., Yeng, M.Y. and Chiu, H.T. (2003) Preparing Titanium Oxide with Various Morphologies. Materials Chemistry and Physics, 81, 39-44.
http://dx.doi.org/10.1016/S0254-0584(03)00100-7

[27]   Sander, M.S., C?té, M.J., Gu, W., Kile, B.M. and Tripp, C.P. (2004) Template-Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well-Controlled Dimensions on Substrates. Advanced Materials, 16, 2052-2057.
http://dx.doi.org/10.1002/adma.200400446

[28]   Macák, J.M., Tsuchiya, H. and Schmuki, P. (2005) High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium. Angewandte Chemie International Edition, 44, 2100-2102.
http://dx.doi.org/10.1002/anie.200462459

[29]   Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005) Enhanced Photocleavage of Water Using Titania Nanotube Arrays. Nano Letters, 5, 191-195.
http://dx.doi.org/10.1021/nl048301k

[30]   Yao, B.D., Chan, Y.F., Zhang, X.Y., Zhang, W.F., Yang, Z.Y. and Wang, N. (2003) Formation Mechanism of TiO2 Nanotubes. Applied Physics Letters, 82, 281-283.
http://dx.doi.org/10.1063/1.1537518

[31]   Juengsuwattananon, K., Jaroenworaluck, A., Panyathanmaporn, T., Jinawath, S. and Supothina, S. (2007) Effect of Water and Hydrolysis Catalyst on the Crystal Structure of Nanocrystalline TiO2 Powders Prepared by Sol-Gel Method. Physica Status Solidi (A), 204, 1751-1756.
http://dx.doi.org/10.1002/pssa.200675328

[32]   Spurr, R.A. and Myers, H. (1957) Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Analytical Chemistry, 29, 760-762.
http://dx.doi.org/10.1021/ac60125a006

[33]   Qamar, M., Yoon, C.R., Oh, H.J., Lee, N.H., Park, K., Kim, D.H., Lee, K.S., Lee, W.J. and Kim, S.J. (2008) Preparation and Photocatalytic Activity of Nanotubes Obtained from Titanium Dioxide. Catalysis Today, 131, 3-14.
http://dx.doi.org/10.1016/j.cattod.2007.10.015

[34]   Sauvet, A.L., Baliteau, S., Lopez, C. and Fabry, P. (2004) Synthesis and Characterization of Sodium Titanates Na2Ti3O7 and Na2Ti6O13. Journal of Solid State Chemistry, 177, 4508-4515.
http://dx.doi.org/10.1016/j.jssc.2004.09.008

[35]   Marchand, R., Brohan, L. and Tournoux, M. (1980) TiO2(B) a New Form of Titanium Dioxide and the Potassium Octatitanate K2Ti8O17. Materials Research Bulletin, 15, 1129-1133.
http://dx.doi.org/10.1016/0025-5408(80)90076-8

[36]   Godbole, V.P., Kim, Y.S., Kim, G.S., Dar, M.A. and Shin, H.S. (2006) Synthesis of Titanate Nanotubes and Its Processing by Different Methods. Electrochimica Acta, 52, 1781-1787.
http://dx.doi.org/10.1016/j.electacta.2005.12.058

[37]   Temple-Boyer, P., Launay, J., Humenyuk, I., Do Conto, T., Martinez, A., Bériet, C. and Grisel, A. (2004) Study of Front-Side Connected Chemical Field Effect Transistor for Water Analysis. Microelectronics Reliability, 44, 443-447.
http://dx.doi.org/10.1016/j.microrel.2003.10.001

[38]   Walczak, M.M., Dryer, D.A., Jacobson, D.D., Foss, M.G. and Flynn, N.T. (1997) pH Dependent Redox Couple: An Illustration of the Nernst Equation. Journal Chemical Education, 174, 1195-1197.
http://dx.doi.org/10.1021/ed074p1195

 
 
Top