JEP  Vol.5 No.7 , May 2014
Photocatalytic Degradation of Ibuprofen Using TiO2 and Ecotoxicological Assessment of Degradation Intermediates against Daphnia similis

Several pharmaceutical compounds have been detected in natural aqueous systems and ibuprofen (IBF), one of the most consumed medicament, has been detected in many countries. The degradation efficiency of IBF under TiO2/UV radiation was evaluated. Optimum degradation results were observed using 20 mg·L-1 of TiO2, pH 7.8 and 5 mg·L-1 of IBF. Under these experimental conditions total IBF removal was achieved in less than 60 min of irradiation. Although total IBF concentration was observed, the total mineralization of the compound was not achieved. The by-products generated during TiO2/UV reaction showed to be more toxic against Daphnia similis than the initial IBF present in aqueous solution.

Cite this paper: Braz, F. , Silva, M. , Silva, F. , Andrade, S. , Fonseca, A. and Kondo, M. (2014) Photocatalytic Degradation of Ibuprofen Using TiO2 and Ecotoxicological Assessment of Degradation Intermediates against Daphnia similis. Journal of Environmental Protection, 5, 620-626. doi: 10.4236/jep.2014.57063.

[1]   Melo, S.A.S., Trovo, A.G., Bautitz, I.R. and Nogueira, R.F.P. (2009) Degradation of Residual Pharmaceuticals by Advanced Oxidation Processes. Quimica Nova, 32, 188-197.

[2]   Halling-Sorensen, J.B., Nors Nielsen, S., Lanzky, P.F., Ingerslev, F., HoltenLiitzhofl, H.C. and Jorgensen, S.E. (1998) Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment—A Review. Chemosphere, 36, 357-393.

[3]   Ghiselli, G. and Jardim, W.F. (2007) Endocrine Disruptors in the Environment. Quimica Nova, 30, 695-706.

[4]   Santos, J.L., Aparicio, I. and Alonso, E. (2007) Occurrence and Risk Assessment of Pharmaceutically Active Compounds in Wastewater Treatment Plants. A Case Study: Seville City (Spain). Environment International, 33, 596-601.

[5]   Bu, Q., Wang, B., Huang, J., Deng, S. and Yu, G. (2013) Pharmaceuticals and Personal Care Products in the Aquatic Environment in China: A Review. Journal of Hazardous Materials, 262, 189-211.

[6]   Carballa, M., Omil, F., Lema, J., Lompart, M., Garcia-Jares, C., Rodriguez, I., Gomez, M. and Ternes, T. (2004) Behavior of Pharmaceuticals, Cosmetics and Hormones in a Sewage Treatment Plants. Water Research, 38, 2918-2926.

[7]   Da Silva, J.C.C., Teodoro, J.A.R., Afonso, R.J.C.F., Aquino, S.F. and Augusti, R. (2013) Photolysis and Photocatalysis of Ibuprofen in Aqueous Medium: Characterization of By-Products via Liquid Chromatography Coupled to High-Resolution Mass Spectrometry and Assessment of Their Toxicities against Artemia Salina. Journal Mass Spectrometry, 49, 145-153.

[8]   Choina, J., Kosslick, H., Fischer, C., Flechsig, G.-U., Frunza, L. and Schulz, A. (2013) Photocatalytic Decomposition of Pharmaceutical Ibuprofen Pollutions in Water over Titaniacatalyst. Applied Catalysis B: Environmental, 129, 589-598.

[9]   Mendez-Arriaga, F., Esplugas, S. and Gimenez, J. (2008) Photocatalytic Degradation of Non-Steroidal Anti-Inflammatory Drugs with TiO2 and Simulated Solar Irradiation. Water Research, 42, 585-594.

[10]   Matilainen, A. and Sillanpaa, M. (2010) Removal of Natural Organic Matter from Drinking Water by Advanced Oxidation Processes. Chemosphere, 80, 351-365.

[11]   Lamsal, R., Walsh, M.E. and Gagnon, G.A. (2011) Comparison of Advanced Oxidation Processes for the Removal of Natural Organic Matter. Water Research, 45, 3263-3269.

[12]   Shu, Z., Bolton, J.R., Belosevic, M. and El Din, M.G. (2013) Photodegradation of Emerging Micropollutants Using the Medium-Pressure UV/H2O2 Advanced Oxidation Process. Water Research, 30, 1-9.

[13]   Miranda-Garcia, N., Maldonado, M.I., Coronado, J.M. and Malato, S. (2010) Degradation Study of 15 Emerging Contaminants at Low Concentration by Immobilized TiO2 in a Pilot Plant. Catalysis Today, 151, 107-113.

[14]   Fernandez-Alba, A.R., Hernando, D., Aguera, A., Caceres, J. and Malato, S. (2002) Toxicity Assays: A Way for Evaluating AOPs Efficiency. Water Research, 36, 4255-4262.

[15]   Parra, S., Sarria, V., Malato, S., Peringer, P. and Pulgarin, C. (2000) Photochemical versus Coupled Photochemical-Biological Flow System for the Treatment of Two Biorecalcitrant Herbicides: Metobromuron and Isoproturon. Applied Catalysis B: Environmental, 27, 153-168.

[16]   Achilleos, A., Hapeshi, E., Xekoukoulotakis, N.P., Mantzavinos, D. and Fatta-Kassinos, D. (2010) UV-A and Solar Photodegradation of Ibuprofen and Carbamazepine Catalyzed by TiO2. Separation Science and Technology, 45, 1564-1570.

[17]   Miranda-Garcia, N., Maldonado, M.I., Coronado, J.M. and Malato, S. (2010) Degradation Study of 15 Emerging Contaminants at Low Concentration by Immobilized TiO2 in a Pilot Plant. Catalysis Today, 151, 107-113.

[18]   Associacao Brasileira De Normas Tecnicas (2004) NBR 12713: Ecotoxicologia aquatica—Toxicidade aguda—Metodo de ensaio com Daphnia spp (Cladocera, Crustacea). Rio de Janeiro.

[19]   Petrovic, M., Hernando, M.D., Diaz-Cruz, M.S. and Barcelo, D. (2005) Liquid Chromatography-Tandem Mass Spectrometry for the Analysis of Pharmaceutical Residues in Environmental Samples: A Review. Journal of Chromatography A, 1067, 1-14.

[20]   Szabo, R.K., Megyeri, Cs, Illes, E., Gajda-Schrantz, K., Mazellier, P. and Domb, A. (2011) Phototransformation of I-buprofen and Ketoprofen in Aqueous Solutions. Chemosphere, 84, 1658-1663.

[21]   Currie, L.A. and Hortwitz, W. (1994) IUPAC Recommendations for Defining and Measuring Detection and Quantification Limits. Analusis, 2, M24-M26.

[22]   Ribani, M., Bottoli, C.B.G., Collins, C.H., Melo, L.F.C. and Jardim, I.C.S.F. (2004) Validation for Chromatographic and Electrophoretic Methods. Quimica Nova, 27, 771.

[23]   Son, H.S., Lee, S.J., Cho, I.H. and Zoh, K.D. (2004) Kinetics and Mechanism of TNT Degradation in TiO2 Photocatalysis. Chemosphere, 57,309-317.

[24]   Kosmulski, M. (2011) The pH-Dependent Surface Charging and Points of Zero Charge: V. Update. Journal of Colloid and Interface Science, 353, 1-15.

[25]   Saepurahman, Abdullah, M.A. and Chong, F.K. (2010) Preparation and Characterization of Tungsten-Loaded Titanium Dioxide Photocatalyst for Enhanced Dye Degradation. Journal of Hazardous Materials, 176, 451-458.

[26]   Pruden, A.L. and Ollis, D.F. (1983) Photoassisted Heterogeneous Catalysis: The Degradation of Trichloroethylene in Water. Journal of Catalysis, 82, 404-417.

[27]   Wang, C., Liu, H. and Qu, Y.Z. (2013) TiO2-Based Photocatalytic Process for Purification of Polluted Water: Bridging Fundamentals to Applications. Journal of Nanomaterials, 2013, Article ID 319637.

[28]   Jardim, W.F., Moraes, S.G. and Takiyama, M.M. (1997) Photocatalytic Degradation of Aromatic Chlorinated Compounds Using TiO2: Toxicity of Intermediates. Water Research, 31, 1728-1732.

[29]   Flippin, J.L., Huggett, D. and Foran, C.M. (2007) Changes in the Timing of Reproduction Following Chronic Exposureto Ibuprofen in Japanese Medaka, Oryzias latipes. Aquatic Toxicology, 81, 73-78.

[30]   Hayashi, Y., Heckmann, L.H., Callaghan, A. and Sibly, R.M. (2008) Reproduction Recovery of the Crustacean Daphnia magna after Chronic Exposure to Ibuprofen. Ecotoxicology, 17, 246-251.

[31]   Heckmann, L.H., Callaghan, A., Hooper, H.L., Connona, R., Hutchinson, T.H., Maundc, S.J. and Sibly, R.M. (2007) Chronic Toxicity of Ibuprofen to Daphnia magna: Effects on Life History Traits and Population Dynamics. Toxicology Letters, 172, 137-145.

[32]   Ragugnetti, M., Adams, M.L., Guimaraes, A.T.B., Sponchiado, G., De Vasconcelos, E.C. and De Oliveira, C.M.R. (2011) Ibuprofen Genotoxicity in Aquatic Environment: An Experimental Model Using Oreochromis niloticus. Water, Air, & Soil Pollution, 218, 361-364.

[33]   Han, S., Choi, K., Kim, J., Ji, K., Kim, S., Ahn, B., Yunc, J., Choic, K., Khimd, J.S., Zhange, X. and Giesy, J.P. (2010) Endocrine Disruption and Consequences of Chronic Exposure to Ibuprofen in Japanese Medaka (Oryzias latipes) and Freshwater Cladocerans Daphnia magna and Moina macrocopa. Aquatic Toxicology, 98, 256-264.