OJG  Vol.1 No.1 , April 2011
Distributions of Radionuclides (U & Th) and Pedogenic Characteristics as Indicators of Wet and Warm Climate during the Holocene in the Western Part of the Upper Gangetic Plain, India
Abstract: Distribution of radionuclides in the soil samples, Infra-red stimulated luminescence dating techniques, elec-trical conductivity, pH measurements and grain size analysis of soils of the region between the Ganga and Yamuna Rivers (in the Upper Gangetic plain) have been studied. Soil characteristics are highly sensitive to climate changes and the degree of soil development indicated by higher thicknesses of A-Horizons, solum and clay accumulation in b-horizon are higher during the periods 1.7 - 3.6 ka and 6.5 - 9.6 ka, marked by wet and warm climates (inferred from earlier studies), the former period being marked by higher degree of soil development than the later. Radionuclides are significantly in higher amounts in soils developed during the period 1.7 - 3.6 ka, thus indicating that this was the wettest and warmest period, so these radionuclides could be released by weathering of primary rocks and be preserved in sedimentary rocks deposited during that pe-riod.
Cite this paper: B. Bhosle, "Distributions of Radionuclides (U & Th) and Pedogenic Characteristics as Indicators of Wet and Warm Climate during the Holocene in the Western Part of the Upper Gangetic Plain, India," Open Journal of Geology, Vol. 1 No. 1, 2011, pp. 1-9. doi: 10.4236/ojg.2011.11001.

[1]   P. Srivastava, I.B. Singh, M. Sharma and A. K. Singhvi, “Lu-minescence Chronometry and Late Quaternary geomorphic history of the Ganga Plain. India” Palaeogeo., Palaeoclimat., Paleoeco. Vol. 197, 2003, pp. 15-41.

[2]   S. Kumar, B. Par-kash, M. L. Manchanda, A. K. Singhvi, and P. Srivastava, “Holocene landform and land evaluation of the Western Gangetic Plains: Implications of neotectonics and climate”. Zutschrift fuer Geomorphologie, Vol. 103, 1996, pp. 283–312.

[3]   D. K. Pal, S. B. Deshpande, K. R. Venugopal, and A. R. Kalbande, “Formation of di- and trioctahedral smec-tite as evidence for Paleoclimatic changes in southern and cen-tral Peninsular India”, Geoderma, Vol. 45, 1989, pp. 175- 184.

[4]   P. Srivastava, B. Parkash and D. K. Pal, “Clay Min-erals in Soils as Evidence of Holocene Climatic Change, Cen-tral Indo-Gangetic Plains, North-Central India”, Quaternary Research, 50, 1998, pp 230-239.

[5]   I. B. Singh, “Late Qua-ternary evolution of Ganga Plain and proxy records of climate change, neotectonics and anthropogenic activity”, Prayagdhara, Journal of the U.P. State Archaeological Department (India), Vol. 12, 2001, pp. 1-25.

[6]   J. E. Andrews, A. K. Singhvi, A. J. Kailath, R. Kuhn, P. F. Dennis, S. K. Tandon and R. P. Dhir, “Do Stable Isotopes Data from the Calcrete Record Late Pleistocene Monsoonal Climatic Variation in the Thar Desert of India?”, Quaternary Research, Vol. 50, 1998, pp. 240-251.

[7]   S. Sharma, M. Joachimski, M. Sharma, H. J. Tobschall, I. B. Singh, C. Sharma, M. S. Chauhan, and G. Morgenroth, “Lateglacial and Holocene environmental changes in Ganga plain, Northern India”, Quaternary Science Reviews, Vol. 23, No. 1-2, 2004, pp. 145-159.

[8]   I. B. Singh, S. Sharma, M. Sharma, P. Srivastava, and G. Rajgopalan, “Evi-dence of human occupation and humid climate of 30 Ka in the alluvium of southern Ganga Plain”, Current Science, Vol. 76, 1999, pp. 1022-1026.

[9]   G. Singh, R. D. Joshi, S. K. Chopra, and A. B. Singh, “Late Quaternary history of vegetation and climate of the Rajasthan desert, India”, Philosphical Transac-tions of the Royal Society of London Vol. 267, 1974, pp. 467-501.

[10]   R. Sinha, W. Smykatz-Kloss, D. Stuben, S. P. Harrison, Z. Berner and U. Kramar, “Late Quaternary Paleo-climatic reconstructions from the lacustrine sediments of the Sambhar playa core, Thar Desert margin, India”, Palaeogeo. Palaeocli. Plalaeoeco., Vol. 233, 2006, pp. 252- 270.

[11]   R. Sinha, M. R. Gibling, S. K. Tandon, V. Jain, and A. S. Das-gupta, “Quaternary stratigraphy and sedimentology of the Kotra section on the Betwa river, Southern Gangetic plains, Uttar Pradesh”, Jour. Geological Society of India, Vol. 65, 2005, pp. 441-450.

[12]   Gupta, R.P., 2003. Remote Sensing Geology, 2nd ed. Springer-Verlag, New York. 655 pp.

[13]   Aitken, M.J., 1985. Thermoluminescence Dating, Academic Press, London.

[14]   Aitken M.J., 1998. An intro-duction to optical dating. Oxford University Press. Ox-ford.

[15]   D. I. Godfrey-Smith, D. J. Huntley and W. H. Chen, “Optical dating studies of quartz and feldspar sediment ex-tracts”, Quat. Sci. Rev. Vol. 7, 1998, pp. 373-380.

[16]   G. Hutt, I. Jaek, and J. Tchonka, “Optical dating: K-feldspars optical response stimulation spectrum. Quat. Sci. Rev., Vol. 7, 1988, pp. 381-386.

[17]   M. S. Rao, B. K. Bisaria, and A. K. Singhvi, “A feasibility study towards absolute dating of Indo-Gangetic alluvium using thermoluminescence and infrared stimulated luminescence techniques”’ Curr. Sci., Vol. 72, 1997, pp. 663-669.

[18]   H. A. Das, “The use of standards for quality control in activation analysis”, J. Radioanalytical and Nuclear Chemistry, Vol. 140, No. 2, 1990, pp. 387-393.

[19]   Jackson, M.L., 1967. Soil Chemical Analysis. Prentice-Hall of India Pvt. Ltd., New Delhi, 498p.

[20]   Galehouse, J.S., 1971. Sedimenta-tion analysis. In: Carver, R. (Ed.), Procedures in Sedimentary Petrology. Wiley– Interscience, London, pp. 69-94.

[21]   U.S.D.A., 1999. Soil Taxonomy, A Basic System of Soil Classification for Making and Interpreting Soil Surveys, Handbook No. 436. U.S. Government Printing Office Wash-ington, D.C., 871p.

[22]   Birkeland, P.W., 1984. Soils and Geomorphology, Oxford Univ. Press, New York. 372pp.

[23]   E. L. Levine and E. J. Ciolkosz, “Soil develop-ment in till of various ages in northern Pennsylvania”, Quater. Res., Vol. 19, 1983, pp. 85-99.

[24]   J. Overpeck, D. Anderson, S. Trumbore, and W. L. Prell “The southwest Indian Monsoon over the last 18,000 years”, Clim. Dyn. Vol. 12, 1996, pp. 213-225.

[25]   W. L. Prell, and J. E. Kutzbach, “Monsoon variability over the past 150,000 years”, J. Geophys. Res., Vol. 92, No. 7, 1987, pp. 8411-8425.

[26]   L. Prell, and J. E. Kutz-bach, “Sensitivity of the Indian Monsoon to forcing parameters and implications for its evolution”, Nature, Vol. 360: 1992, pp. 647-652.

[27]   S. L. Goodbread Jr., “Response of the Ganges dispersal system to climate change: a source-to-sink view since the last interstade”, Sediment. Geol., Vol. 162, 2003, pp. 83- 104.

[28]   H. Jenny, “The clay content of the soils as related to climatic factors, particularly temperature”, Soil Sci., Vol. 40, 1985, pp. 111-128.

[29]   McFadden, L.D., 1982. The impact of temporal and spatial climatic changes on alluvial soils genesis in Southern California, Ph.D. thesis, University of Arizona, Tucson, 430p.

[30]   J. Dan, D. H. Yaalon, R. Moshe, and S. Nissim, “Evolution of reg soils in Southern Israel and Sinai”, Geoderma, Vol. 28, 1982, pp. 173-202.

[31]   A. T. Ramli, A. W. M. A. Hussein, and A. K. Wood, “Environmental 238U and 232Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia”, J. of Env. Radioactivity, Vol. 80, 2005, 287-304.

[32]   M. J. Vargas, V. Tome, M. A. Sanchez, M. T. C. Vazquez, and J. L. G. Mrillo, “Distribution of Uranium and Thorium in Sediments and Plants from a Granitic Fluvial Area”, Appl. Radiat. Isot., Vol. 48, No. 8, 1997, pp. 1137-1143.

[33]   F. K. Miah, S. Roy, M. Tuuhiduzzaman, and B. Alam, “Distribution of Radionu-clides in Soil Samples in and Around Dhaka City”, Appl. Ra-diat. Isot., Vol. 49, No. 1-2, 1998, pp. 133-137.

[34]   G. Echevarria, M. I. Sheppard, and J. L. Morel, “Effect of pH on the sorption of uranium in soils”, J. of Env. Radioactivity, Vol. 53, 2001, pp. 257-264.

[35]   A. Martinez-Aguirre, M. Gar-cia-Leon, and M. Ivanovich, “U and Th speciation in river sediments”, J. of The Sci. of the Total Env., Vol. 173/174, 1995, 203-209.

[36]   Langmuir, D., 1997. Aqueous Environmental Geochemistry. Upper Saddle Rive, New Jersey 07458: Simon & Schuster.