[1] Chisti, Y. (2007) Biodiesel from Microalgae. Biotechnology Advances, 25, 294-306.
http://dx.doi.org/10.1016/j.biotechadv.2007.02.001
[2] Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q. and Xian, M. (2009) Biodesel Production from Oleaginous Microorganisms. Renewable Energy, 34, 1-5.
[3] Gouveia, L. and Oliveira, A.C. (2009) Microalgae as a raw Material for Biofuels Production. Journal of Industrial Microbiology & Biotechnology, 36, 269-274.
http://dx.doi.org/10.1007/s10295-008-0495-6
[4] Mata, T.M., Martins, A.A. and Caetano, N.S. (2010) Microalgae for Biodiesel Production and Other Applications: A Review. Renewable and Sustainable Energy Reviews, 14, 217-232.
http://dx.doi.org/10.1016/j.rser.2009.07.020
[5] Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins A. (2008) Microalgal Triacylglycerols as Feedstocks for Biofuels Production: Perspectives and Advances. The Plant Journal, 54, 621-39.
http://dx.doi.org/10.1111/j.1365-313X.2008.03492.x
[6] Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten C., kruse, O. and Hankamer, B. (2008) Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenergy Research, 1, 20-43.
http://dx.doi.org/10.1007/s12155-008-9008-8
[7] Chen, F. (1996) High Cell Density Culture of Microalgae in Heterotrophic Growth. Tibtech November, 14, 421-426.
[8] Chen, G.Q. and Chen, F. (2006) Growing Phototrophic Cell without Light. Biotechnology Letters, 28, 607-616.
http://dx.doi.org/10.1007/s10529-006-0025-4
[9] Wu, Z.Y. and Shi, X.M. (2006) Optimization for High-Density Cultivation of Heterotrophic Chlorella Based on a Hybrid Neural Network Model. Letter in Applied Microbiology, 44, 13-18.
http://dx.doi.org/10.1111/j.1472-765X.2006.02038.x
[10] Liu, J., Huang, J.C., Fan, K.W., Jiang, Y., Zhong, Y.J., Sun, Z. and Chen, F. (2010) Production Potential of Chlorella zofinginesis as A Feedstock for Biodisel. Bioresoure Technology, 101, 8658-8663.
http://dx.doi.org/10.1016/j.biortech.2010.05.082
[11] Griffiths, M.J. and Harrison, S.T.L. (2009) Lipid Productivity as a Key Characterisic for Choosing Algal Species for Biodiesel Production. Journal of Applied Physiology, 21, 493-507.
http://dx.doi.org/10.1007/s10811-008-9392-7
[12] Miao, X. and Wu, Q. (2004) High Yield Bio-Oil Production from Fast Pyrolysis Bymetabolic Controlling of Chlorella protothecoides. Journal of Biotechnology, 110, 85-93.
http://dx.doi.org/10.1016/j.jbiotec.2004.01.013
[13] Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G. and Tredici, M.R. (2008) Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor. Biotechnology and Bioengineering, 102, 100-112.
http://dx.doi.org/10.1002/bit.22033
[14] Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P. (1998)A Look Back at the US Department of Energy’s Aquatic Species Program: Biodiesel from Algae. Close-Out Report. National Renewable Energy Lab, Department of Energy, Golden, Report Number NREL/TP-580-24190.
[15] Rippka, R., Deruelles, J., Waterbury J., Herdman M. and Stanier R. (1979) Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal of General Microbiology, 111, 1-61.
http://dx.doi.org/10.1099/00221287-111-1-1
[16] Yokoyamam, R. and Honda, D. (2007)Taxonomic Rearrangement of the Genus Schizochytrium sensu lato Based on Morphology, Chemotaxonomic Characteristics, and 18S rRNA Gene Phylogeny (Thraustchytriceae, Labyrinthulomycetes): Emendation for Schizochytrium and Erection of Aurantiochytrium and Ologichytrum gen. nov. Mycoscience, 48, 199-211.
http://dx.doi.org/10.1007/S10267-006-0362-0
[17] Bligh, E.G. and Dyer, W.J. (1959) A rapid Method for Total Lipid Extraction and Purfication. Canadian Journal of Biochemistry and Physiology, 37, 911-917.
http://dx.doi.org/10.1139/o59-099
[18] Rozés, N., Garbay, S., Denayrolles, M. and Lonvaud-Funel, A. (1993) A Rapid Method for the Determination of Bacterial Fatty Acid Composition. Letters in Applied Microbiology, 17, 126-131.
http://dx.doi.org/10.1111/j.1472-765X.1993.tb01440.x
[19] Becker (1994) Measurement of Algal Growth. In: Microalgae Biotechnology& Microbiology, Cambridge University Press, Cambridge, 56-62.
[20] Wu, Q.Y., Yin, S., Sheng, G.Y. and Fu, J.M. (1992) A Comparative Study of Gases Generated from Simulant Thermal Degradation of Autotrophic and Heterotrophic Chlorella. Progress in Natural Science (in Chinese), 3, 435-440.
[21] Miller, G.L. (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426-429.
http://dx.doi.org/10.1021/ac60147a030
[22] Ohlrogge, J. and Browse, G. (1995) Lipid Biosynthesis. The Plant Cell, 7, 957-970.
http://dx.doi.org/10.1105/tpc.7.7.957
[23] Borowitzka, M.A. and Borowitzka, L.J. (1988) Microalgal Biotechnology. Cambridge University Press, Cambridge.
[24] Konthe, G. (2009) Improving Biodiesel Fuel Properties by Modifying Fatty Ester Composition. Energy & Environmental Science, 2, 759-766.
http://dx.doi.org/10.1039/b903941d
[25] Konthe, G. (2008) “Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties. Energy & Fuels, 22, 1358-1364.
http://dx.doi.org/10.1021/ef700639e
[26] Sohi, C. (2010) Microalgae Biodiesel as a Substitute for Jet Fuel. California State University, Sacramento.
[27] Chen, F. and Johns, M.R. (1991) Effect of C/N Ratio and Aeration on the Fatty Acid Composition of Heterotrophic Chlorella sorokiniana. Journal of Applied Phycology, 3, 203-209.
http://dx.doi.org/10.1007/BF00003578
[28] Damian, I.M.C., Popovich, C.A., Constenla, D. and Leonardi, P.I. (2010) Lipid Analysis in Haematococcus pluvialis to Assess Its Potential Use as a Biodisel Feedstock. Bioresoure Technology, 101, 3801-3807.
[29] Kong, Q.X., Li, L., Martinez, B., Chen, P. and Ruan, R. (2010) Culture of Microalgae Chlamydomonas reinhardtii in Wastewater for Biomass Feedstock Production. Applied Biochemistry and Biotechnology, 160, 9-18.
http://dx.doi.org/10.1007/s12010-009-8670-4
[30] Morowvat, M.H., Rasoul-Amini, S. and Ghasemi, Y. (2010)Chlamydomona as a “New” Organism for Biodiesel Production. Bioresoure Technology, 101, 2059-2062.
http://dx.doi.org/10.1016/j.biortech.2009.11.032
[31] Rao, A.R., Dayananda, C., Sarada, R., Shamala, T.R. and Ravishankar, G.A. (2007) Effect of Salinity on Growth of Green Alga Botryococcusbraunii and Its Constituents. Bioresource Technology, 98, 560-564.
http://dx.doi.org/10.1016/j.biortech.2006.02.007
[32] Maeda, Y., Sugiyama, H., Sato, S. and Tanaka, T. (2009) Characterization of Marine Microalga, Scenedesmus sp. Strain JPCC GA0024 toward Biofuel Production. Biotechnology Letters, 31, 1367-1372.
http://dx.doi.org/10.1007/s10529-009-0029-y
[33] Cao, J., Yuan, H.L., Li, B.Z. and Yang, J.S. (2013) Significance Evaluation of the Effects of Environmental Factors on the Lipid Accumulation of Chlorella minutissima UTEX 2341 under Low-Nutrition Heterotrophic Condition. Bioresource Technology.
http://dx.doi.org/10.1016/j.biortech.2013.10.084