[1] Croce, C.M. (2008) Oncogenes and Cancer. The New England Journal of Medicine, 358, 502-511. http://dx.doi.org/10.1056/NEJMra072367
[2] Butel, J.S. and Lednicky, J.A. (1999) Cell and Molecular Biology of Simian Virus 40: Implications for Human Infections and Disease. Journal of the National Cancer Institute, 91, 119-134.
http://dx.doi.org/10.1093/jnci/91.2.119
[3] Yaffe, M.B. (2002) Phosphotyrosine-Binding Domains in Signal Transduction. Nature Reviews Molecular Cell Biology, 3, 177-186. http://dx.doi.org/10.1038/nrm759
[4] Varani, J., Zeigler, M., Dame, M.K., Kang, S., Fisher, G.J., Voorhees, J.J., Stoll, S.W. and Elder, J.T. (2001) Heparin-Binding Epidermal-Growth-Factor-Like Growth Factor Activation of Keratinocyte ErbB Receptors Mediates Epidermal Hyperplasia, a Prominent Side-Effect of Retinoid Therapy. Journal of Investigative Dermatology, 117, 1335-1341. http://dx.doi.org/10.1046/j.0022-202x.2001.01564.x
[5] De Potter, I.Y., Poumay, Y., Squillace, K.A. and Pittelkow, M.R. (2001) Human EGF Receptor (HER) Family and Heregulin Members Are Differentially Expressed in Epidermal Keratinocytes and Modulate Differentiation. Experimental Cell Research, 271, 315-328. http://dx.doi.org/10.1006/excr.2001.5390
[6] Lewis, D.A., Zweig, B., Hurwitz, S.A. and Spandau, D.F. (2003) Inhibition of erbB Receptor Family Members Protects HaCaT Keratinocytes from Ultraviolet-B-Induced Apoptosis. Journal of Investigative Dermatology, 120, 483-488. http://dx.doi.org/10.1046/j.1523-1747.2003.12060.x
[7] Montemurro, F. and Scaltriti, M. (2014) Biomarkers of Drugs Targeting HER-Family Signalling in Cancer. The Journal of Pathology, 232, 219-229. http://dx.doi.org/10.1002/path.4269
[8] Reiss, M., Dibble, C.L. and Narayanan, R. (1989) Transcriptional Activation of the c-myc Proto-Oncogene in Murine Keratinocytes Enhances the Response to Epidermal Growth Factor. Journal of Investigative Dermatology, 93, 136-141. http://dx.doi.org/10.1111/1523-1747.ep12277384
[9] Wille, J.J. (1989) Malignant Transformation of Normal Human Keratinocytes by SV-40 Virus. The Annals of the New York Academy of Sciences, 567, 307-310.
[10] Wilke, M.S., Hsu, B.M., Wille Jr., J.J., Pittelkow, M.R. and Scott, R.E. (1988) Biologic Mechanisms for the Regulation of Normal Human Keratinocyte Proliferation and Differentiation. American Journal of Pathology, 131, 171-181.
[11] Suganuma, M., Fujiki, H., Suguri, H., Yoshizawa, S., Hirota, M., Nakayasu, M., Ojika, M., Wakamatsu, K., Yamada, K. and Sugimura, T. (1988) Okadaic Acid: An Additional Non-Phorbol-12-Tetradecanoate-13-Acetate-Type Tumor Promoter. Proceedings of the National Academy of Sciences, 85, 1768-1771. http://dx.doi.org/10.1073/pnas.85.6.1768
[12] Fujiki, H., Suganuma, M., Yoshizawa, S., Nishiwaki, S., Winyar, B. and Sugimura, T. (1991) Mechanisms of Action of Okadaic Acid Class Tumor Promoters on Mouse Skin. Environmental Health Perspectives, 93, 211-214. http://dx.doi.org/10.1289/ehp.9193211
[13] Sakai, R., Ikeda, I., Kitani, H., Fujiki, H., Takaku, F., Rapp, U., Sugimura, T. and Nagao, M. (1989) Flat Reversion by Okadaic Acid of raf and ret-II Transformants. Proceedings of the National Academy of Sciences, 86, 9946-9950. http://dx.doi.org/10.1073/pnas.86.24.9946
[14] Garcia, A., Cayla, X., Guergnon, J., Dessauge, F., Hospital, V., Rebollo, M.P., Fleischer, A. and Rebollo, A. (2003) Serine/Threonine Protein Phosphatases PP1 and PP2A Are Key Players in Apoptosis. Biochimie, 85, 721-726. http://dx.doi.org/10.1016/j.biochi.2003.09.004
[15] Boudreau, R.T. and Hoskin, D.W. (2005) The Use of Okadaic Acid to Elucidate the Intracellular Role(s) of Protein Phosphatase 2A: Lessons from the Mast Cell Model System. International Immunopharmacology, 5, 1507-1518. http://dx.doi.org/10.1016/j.intimp.2005.05.007
[16] Valdiglesias, V., Laffon, B., Pásaro, E. and Méndez, J. (2011) Okadaic Acid Induces Morphological Changes, Apoptosis and Cell Cycle Alterations in Different Human Cell Types. Journal of Environmental Monitoring, 13, 1831-1840. http://dx.doi.org/10.1039/c0em00771d
[17] Matias, W.G., Traore, A., Bonini, M., Sanni, A. and Creppy, E.E. (1999) Oxygen Reactive Radicals Production in Cell Culture by Okadaic Acid and Their Implication in Protein Synthesis Inhibition. Human & Experimental Toxicology, 18, 634-639. http://dx.doi.org/10.1191/096032799678839473
[18] Haystead, T.A., Sim, A.T.R., Carling, D., Honnor, R.C., Tsukitani, Y., et al. (1989) Effects of the Tumour Promoter Okadaic Acid on Intracellular Protein Phosphorylation and Metabolism. Nature, 337, 78-81. http://dx.doi.org/10.1038/337078a0
[19] Haneji, T., Hirashima, K., Teramachi, J. and Morimoto, H. (2013) Okadaic Acid Activates the PKR Pathway and Induces Apoptosis through PKR Stimulation in MG63 Osteoblast-Like Cells. International Journal of Oncology, 42, 1904-1910.
[20] Zhang, M.L., Tao, Y., Zhou, W.Q., Ma, P.C., Cao, Y.P., et al. (2014) All-Trans Retinoic Acid Induces Cell-Cycle Arrest in Human Cutaneous Squamous Carcinoma Cells by Inhibiting the Mitogen-Activated Protein Kinase-Activated Protein 1 Pathway. Clinical and Experimental Dermatology, 39, 354-360. http://dx.doi.org/10.1111/ced.12227
[21] Vahlquist, A., Lee, J.B., Micha?lsson, G. and Rollman, O. (1982) Vitamin A in Human Skin: II Concentrations of Carotene, Retinol and Dehydroretinol in Various Components of Normal Skin. Journal of Investigative Dermatology, 79, 94-97.