JEMAA  Vol.3 No.4 , April 2011
Bleustein-Gulyaev SAWS with Low Losses: Approximate Direct Solution
Abstract: The main properties (attenuation along the surface, attenuation in depth, additional radiation in depth, dispersion in propagation space) of Bleustein-Gulyaev surface acoustic waves (SAWs) in electroelasticity are determined in terms of a perturbation due to viscosity. This paves the way for a study of the perturbed motion of associated quasi-particles in the presence of low losses.
Cite this paper: nullM. Rousseau and G. Maugin, "Bleustein-Gulyaev SAWS with Low Losses: Approximate Direct Solution," Journal of Electromagnetic Analysis and Applications, Vol. 3 No. 4, 2011, pp. 122-127. doi: 10.4236/jemaa.2011.34020.

[1]   M. Rousseau and G. A. Maugin, “Rayleigh SAW and Its Ca-nonically Associated Quasi-Particle,” Proceedings of the Royal Society of London, Vol. A 467, 2011, pp. 495- 507. doi:10.1098/rspa.2010.0229

[2]   G. A. Maugin and M. Rous-seau, “Bleustein-Gulyaev SAW and Its Associated Qua-si-Article,” International Journal of Engineering Science, Vol. 48, No. 11, November 2010, pp. 1462-1469. doi:10.1016/j.ijengsci.2010.04.016

[3]   J. L. Bleustein, “A New Surface Wave in Piezoelectric Materials,” Applied Physics Letters, Vol. 13, No. 12, 1968, pp. 412-414. doi:10.1063/1.1652495

[4]   Y. V. Gulyaev, “Electroacoustic Surface Waves in Solids,” ZhETF Pis ma Redaktsiiu, Vol. 9, 1969, pp. 35- 38.

[5]   M. Romeo, “A Solution for Transient Surface Waves of the B-G Type in a Dissipative Piezoelectric Crystal,” Zeitschrift für Angewandte Mathematik und Physik (ZAMP), Vol. 52, No. 5, 2001, pp. 730-748.

[6]   P. Caloi, “Comportement des ondes de Rayleigh dans un milieu fir-mo-élastique indéfini,” Publ. Bureau Central Seismol. Internat., Sér. A. Travaux scientifiques, Vol. 17, 1950, pp. 89-108.

[7]   J. G. Scholte, “On Rayleigh Waves in Visco-Elastic Media,” Physica (Utrecht), Vol. 13, No. 4-5, May 1947, pp. 245-250. doi:10.1016/0031-8914(47)90083-9

[8]   Y. M. Tsai and H. Kolsky, “Surface Wave Propagation for Linear Viscoelastic Solids,” Journal of the Mechanics and Physics of Solids, Vol. 16, No. 2, March 1968, pp. 99-109. doi:10.1016/0022-5096(68)90008-2

[9]   P. K. Curie, M. A. Hayes and P. M. O’Leary, “Viscoelastic Rayleigh Waves,” Quarterly of Applied Mathematics, Vol. 35, 1977, pp. 35-53.

[10]   P. K. Curie and P. M. O’Leary, “Viscoelatic Rayleigh Waves II,” Quarterly of Applied Mathematics, Vol. 35, 1978, pp. 445-454.

[11]   M. Romeo, “Rayleigh Waves on a Viscoelastic Solid Half-Space,” The Journal of the Acoustical Society of America, Vol. 110, No. 1, 2001, pp. 59-67. doi:10.1121/1.1378347

[12]   C. G. Lai and G. L. Rix, “Solution of the Rayleigh Eigenproblem in Viscoelastic Media,” Bulletin of the Seismological Society of America, Vol. 92, No. 6, 2002, pp. 2297-2309. doi:10.1785/0120010165

[13]   D. P. Acharya and A. Mondal, “Propagation of Rayleigh Waves with Small Wavelength Innonlocal Visco-Elastic Media,” Sadhana, Vol. 27, No. 6, 2002, pp. 605-612.

[14]   S. K. Addy and N. R. Chakraborty, “Rayleigh Waves in a Viscoelastic Half-Space under Initial Hydrostatic Stress in Presence of the Temperature Field,” International Journal of Mathematics Sciences, Vol. 24, 2005, pp. 3883-3894. doi:10.1155/IJMMS.2005.3883

[15]   J. M. Carcione, “Rayleigh Waves in Isotropic Viscoelastic Media,” Geophysical Journal International, Vol. 108, No. 2, 2007, pp. 453-464. doi:10.1111/j.1365-246X.1992.tb04628.x

[16]   G. A. Maugin, “Continuum Mechanics of Electromagnetic Solids,” North-Holland, Amsterdam, 1988.

[17]   G. A. Maugin, J. Pouget, R. Drouot and B. Collet, “Non- linear Electromechanical Couplings,” John Wiley & Sons, New York, 1992.

[18]   A. C. Eringen and G. A. Maugin, “Electrodynamics of Continua,” Springer, New York, 1990.

[19]   G. A. Maugin, “Configura-tional Forces: Thermomechanics, Physics, Mathematics, and Numerics,” CRC/Taylor and Francis, Boca Raton, Florida, 2011.