ABB  Vol.2 No.2 , April 2011
Antidepressant and cognitive activities of intranasal piperine-encapsulated liposomes
ABSTRACT
Antidepressant and cognitive effects of piperine -encapsulated liposomes (PL) were investigated in male Wistar rats. Oral piperine (5 mg/kg body weight/day) and intranasal PL (7.2 µg/day) were randomly assigned to daily administer for 14 days to rats which were subjected to forced swimming, Mor-ris water maze and spontaneous motor behavior tests. PL significantly exhibited anti-depression like activity and cognitive enhancing effects, in comparison to the control groups after the first dose (p < 0.01) and the effects could be maintained throughout the period of study. Quantitative analysis of the brain homogenates by HPLC indicated that piperine, delivered either orally or nasally, distributed to the hippocampus at a higher extent than the cortex and that the time to peak concentration of nasal PL was shorter than for the oral piperine. Intranasal PL was, thus, potential in delivery of piperine, at a low dose, to exert its an-tidepressant and cognitive enhancing activities.

Cite this paper
nullPriprem, A. , Chonpathompikunlert, P. , Sutthiparinyanont, S. and Wattanathorn, J. (2011) Antidepressant and cognitive activities of intranasal piperine-encapsulated liposomes. Advances in Bioscience and Biotechnology, 2, 108-116. doi: 10.4236/abb.2011.22017.
References
[1]   Lee, S.A., Hong, S.S., Han, X.B., Hwang, J.S., Oh, G.J., Lee, K.S., Lee , M.K., Hwang, B.Y. and Ro, J.S. (2005) Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chemical & Pharmaceutical Bulletin (Tokyo), 53, 832-835. doi:10.1248/cpb.53.832

[2]   Li, S., Wang, C., Wang, M., Li, W., Matsumoto, K. and Tang, Y. (2007) Antidepressant like effects of piperine in chronic mild stress treated mice and its possible mechanisms. Life Sciences, 80, 1373-1381. doi:10.1016/j.lfs.2006.12.027

[3]   Li, S., Wang, C., Li, W., Koike, K., Nikaido, T. and Wang, M.W. (2007) Antidepressant-like effects of piperine and its derivative, antiepilepsirine. Journal of Asian Natural Products Research, 9, 421-430. doi:10.1080/10286020500384302

[4]   Gupta, S.K., Bansal, P., Bhardwaj, R.K. and Velpandian, T. (2000) Comparative antinociceptive, anti-inflammatory and toxicity profile of nimesulide vs nimesulide and piperine combination. Pharmacological Research, 41, 657-662. doi:10.1006/phrs.1999.0640

[5]   D’Hooge, R., Pei, Y.Q., Raes, A., Lebrun, P., Van Bogaert, P.P. and De Deyn, P.P. (1996) Anticonvulsant activity of piperine on seizures induced by excitatory amino acid receptor agonists. Arzneimittelforschung, 46, 557-560.

[6]   Bai, Y.F. and Xu, H. (2000) Protective action of piperine against experimental gastric ulcer. Acta Pharmacologica Sinica, 21, 357-359.

[7]   Selvendiran, K., Singh, J.P., Krishnan, K.B. and Sakthisekaran, D. (2003) Cytoprotective effect of piperine against benzo[a]pyrene induced lung cancer with reference to lipid peroxidation and antioxidant system in Swiss albino mice. Fitoterapia, 74, 109-115. doi:10.1016/S0367-326X(02)00304-0

[8]   Wattanathorn, J., Chonpathompikunlert, P., Muchimapura, S., Priprem, A. and Tankamnerdthai, O. (2008) Piperine, the potential functional food for mood and cognitive disorders. Food and Chemical Toxicology, 46, 3106-3110. doi:10.1016/j.fct.2008.06.014

[9]   Kong, L.D., Cheng, C.H. and Tan, R.X. (2004) Inhibition of MAO A and B by some plant-derived alkaloids, phenols and anthraquinones. Journal of Ethnopharmacology, 91, 351-355. doi:10.1016/j.jep.2004.01.013

[10]   Chonpathompikunlert, P., Wattanathorn, J. and Muchimapura, S. (2010) Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food and Chemical Toxicology, 48, 798-802. doi:10.1016/j.fct.2009.12.009

[11]   Duman, R.S., Malberg, J., Nakagawa, S. and D'Sa, C. (2000) Neuronal plasticity and survival in mood disorders. Biological Psychiatry, 48, 732-739. doi:10.1016/S0006-3223(00)00935-5

[12]   Daware, M.B., Mujumdar, A.M. and Ghaskadbi, S. (2000) Reproductive toxicity of piperine in Swiss albino mice. Planta Medica, 66, 231-236. doi:10.1055/s-2000-8560

[13]   Malini, T., Manimaran, R.R., Arunakaran, J., Aruldhas, M.M. and Govindarajulu, P. (1999) Effects of piperine on testis of albino rats. Journal of Ethnopharmacology, 64, 219-225. doi:10.1016/S0378-8741(98)00128-7

[14]   Bhat, B.G. and Chandrasekhara, N. (1986) Studies on the metabolism of piperine: Absorption, tissue distribution and excretion of urinary conjugates in rats. Toxicology, 40, 83-92. doi:10.1016/0300-483X(86)90048-X

[15]   Jain, K.K. (2007) Nanobiotechnology-Based Drug Delivery to the Central Nervous System. Neurodegenerative Diseases, 4, 287-291. doi:10.1159/000101884

[16]   Veerareddy, P.R. and Vobalaboina, V. (2008) Pharmacokinetics and tissue distribution of piperine lipid nanospheres. Pharmazie, 63, 352-355.

[17]   Xie, Y., Ye, L., Zhang, X., Cui, W., Lou, J., Naqai, T. and Hou, X. (2005) Transport of nerve growth factor encapsulated into liposomes across the blood-brain barrier: in vitro and in vivo studies. Journal of Controlled Release, 105, 106-119. doi:10.1016/j.jconrel.2005.03.005

[18]   Visser, C.C., Stevanovic, S., Voorwinden, L.H., van Bloois, L., Gaillard, P.J., Danhof, M., Crommelin, D.J. and de Boer, A.G. (2005) Targeting liposomes with protein drugs to the blood-brain barrier in vitro. European Journal of Pharmaceutical Sciences, 25, 299-305.

[19]   Romeo, V.D., de Meireles, J., Sileno, A.P., Pimplaskar, H.K. and Behl, C.R. (1998) Effects of physicochemical properties and other factors on systemic nasal drug delivery. Advance Drug Delivery Reviews, 29, 89-116. doi:10.1016/S0169-409X(97)00063-X

[20]   Illum, L. (2000) Transport of drugs from the nasal cavity to the central nervous system. European Journal of Pharmaceutical Sciences, 11, 1-18. doi:10.1016/S0928-0987(00)00087-7

[21]   Mathison, S., Nagilla, R. and Kompella, U.B. (1998) Nasal route for direct delivery of solutes to the central nervous system: Fact or fiction? Journal of Drug Targeting, 5, 415-441. doi:10.3109/10611869808997870

[22]   Frey, W.H., Liu, J., Chen, X., Thorne, R.G., Fawcett, J.R., Ala, T.A. and Rahman, Y.E. (1997) Delivery of 125I-NGF to the brain via the olfactory route. Drug Delivery, 4, 87-92. doi:10.3109/10717549709051878

[23]   Dyer, A.M., Hinchcliffe, M., Watts, P., Castile, J., Jabbal-Gill, I., Nankervis, R., Smith, A. and Illum, L. (2002) Nasal delivery of insulin using novel chitosan based formulations: A comparative study in two animal models between simple chitosan formulations and chitosan nanoparticle. Pharmaceutical Research, 19, 998-1008. doi:10.1023/A:1016418523014

[24]   Illum, L., Furraj, N., Critcheley, H. and Davis, S.S. (1988) Nasal administration of gentamicin using a novel microsphere delivery system. International Journal of Pharmaceutics, 46, 261-265. doi:10.1016/0378-5173(88)90087-7

[25]   Vyas, S.P., Goswami, S.K. and Ranjit, S. (1995) Liposomes based nasal delivery system of nifedipine: Development and characterization. International Journal of Pharmaceutics, 118, 23-30. doi:10.1016/0378-5173(94)00296-H

[26]   Hussain, A.A. (1998) Intranasal drug delivery. Advance Drug Delivery Reviews, 29, 39-49. doi:10.1016/0378-5173(94)00296-H

[27]   Illum, L., J?rgensen, H., Bisgaard, H., Krogsgaard, O. and Rossing, N. (1987) Bioadhesive microsphere as a potential nasal drug delivery system. International Journal of Pharmaceutics, 39, 189-199. doi:10.1016/0378-5173(87)90216-X

[28]   Vyas, S.P., Bhatnagar, S., Gogol, P.J. and Jain, N.K. (1991) Preparation and characterization of HSA propranolol microspheres for nasal administration. International Journal of Pharmaceutics, 69, 5-12. doi:10.1016/0378-5173(91)90081-X

[29]   Kreuter, J. (2001) Nanoparticulate systems for brain delivery of drugs. Advance Drug Delivery Reviews, 47, 65-81. doi:10.1016/S0169-409X(00)00122-8

[30]   D’Hooge, R. and de Deyn, P.P. (2001) Application of the Morris water maze in the study of learning and memory. Brain Research Reviews, 36, 60-90. doi:10.1016/S0165-0173(01)00067-4

[31]   Detke, M.J., Rickels, M. and Lucki, I. (1995) Active behaviors in the rat forced swimming test differentially activated by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl), 121, 66-72. doi:10.1007/BF02245592

[32]   Adan, R.A., Szklarczyk, A.W., Oosterom, J., Brakkee, J.H., Nijenhuis, W.A., Schaaper, W.M., Meloen, R.H. and Gispen, W.H. (1999) Characterization of melanocortin receptor ligands on cloned brain melanocortin receptors and on grooming behavior in the rat. European Journal of Pharmacology, 378, 249-258. doi:10.1016/S0014-2999(99)00465-3

[33]   Murray, A.M. and Waddington, J.L. (1989) Behavioural indices of the interaction of clozapine with D1 and D2 dopamine receptors. British Journal of Pharmacology, 98, 814.

[34]   Sobrian, S.K., Jones, B.L., Varghese, S. and Holson, R.R. (2003) Behavioral response profiles following drug challenge with dopamine receptor subtype agonists and antagonists in developing rat. Neurotoxicology and Teratology, 25, 311-328. doi:10.1016/S0892-0362(03)00009-6

[35]   Presti, M.F., Watson, C.J., Kennedy, R.T., Yang, M. and Lewis, M.H. (2004) Behavior-related alterations of striatal neurochemistry in a mouse model of stereotyped movement disorder. Pharmacology Biochemistry and Behavior, 77, 501-507. doi:10.1016/j.pbb.2003.12.004

[36]   Lodge, D.J. and Lawrence, A.J. (2003) The effect of isolation rearing on volitional ethanol consumption and central CCK/dopamine systems in Fawn-Hooded rats. Behavioural Brain Research, 141, 113-122. doi:10.1016/S0166-4328(02)00328-5

[37]   Higgs, S. and Cooper, S.J. (2000) The effect of the dopamine D2 receptor antagonist raclopride on the pattern of licking microstructure induced by midazolam in the rat. European Journal of Pharmacology, 409, 73-80. doi:10.1016/S0014-2999(00)00802-5

[38]   Asin, K.E., Davis, J.D. and Bednarz, L. (1992) Differential effects of serotonergic and catecholaminergic drugs on ingestive behavior. Psychopharmacology (Berl), 109, 415-421. doi:10.1007/BF02247717

[39]   Guo, J., Ping, Q., Jiang, G., Huang, L. and Tong, Y. (2003) Chitosan-coated liposomes: Characterization and interaction with leuprolide. International Journal of Pharmaceutics, 260, 167-173. doi:10.1016/S0378-5173(03)00254-0

[40]   Liang, M.T., Davies, N.M. and Toth, I. (2005) Encapsulation of lipopeptides within liposomes: Effect of number of lipid chains, chain length and method of liposome preparation. International Journal of Pharmaceutics, 301, 247-254. doi:10.1016/j.ijpharm.2005.06.010

[41]   Priprem, A., Rahman, Y.E., Juhn, S.K., Lakkaraju, A. and Pituksuteepong, T. (1999) A liposome-encapsulated ampicillin. Mahidol Journal, 6, 55-57.

[42]   Porsolt, P.D., Anton, G., Blavet, N. and Jalfre, M. (1978) Behavioural despair in rats: A new model sensitive to antidepressant treatments. European Journal of Pharmacology, 47, 379-391. doi:10.1016/0014-2999(78)90118-8

[43]   Lucki, I. (1997) The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behavioural Pharmacology, 8, 523-532. doi:10.1097/00008877-199711000-00010

[44]   Mason, G.J. (1991) Stereotypies: A critical review. Animal Behaviour, 41, 1015-1037. doi:10.1016/S0003-3472(05)80640-2

[45]   Ohkawa, H., Ohishi, N. and Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358. doi:10.1016/0003-2697(79)90738-3

[46]   Page, M.E., Brown, K. and Lucki, I. (2003) Simultaneous analyses of the neurochemical and behavioral effects of the norepinephrine reuptake inhibitor reboxetine in a rat model of antidepressant action. Psychopharmacology (Berl), 165, 194-201.

[47]   Petit-Demouliere, B., Chenu, F. and Bourin, M. (2004) Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology (Berl), 177, 245-255. doi:10.1007/s00213-004-2048-7

[48]   Lucassen, P.J., Fuchs, E. and Czeh, B. (2004) Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biological Psychiatry, 55, 789-796. doi:10.1016/j.biopsych.2003.12.014

[49]   Schloss, P. and Henn, F.A. (2004) New insights into the mechanisms of antidepressant therapy. Pharmacology & Therapeutics, 102, 47-60. doi:10.1016/j.pharmthera.2004.02.001

[50]   Ingkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T. and Thongnoi, W. (2003) Screening for acetylcholinesterase inhibitory activity in plants used Thai traditional rejuvenation and neurotonic remedies. Journal of Ethonopharmacology, 89, 261-264. doi:10.1016/j.jep.2003.08.008

 
 
Top