[1] Zadeh, L.A. (1965) Fuzzy Sets as a Basis of Theory of Possibility. Fuzzy Sets and Systems, 1, 3-28.
http://dx.doi.org/10.1016/0165-0114(78)90029-5
[2] Chen, G.Q., Lee, S.C. and Yu, E.S.H. (1983) Application of Fuzzy Set Theory to Economics, In: Wang, P.P., Ed., Advances in Fuzzy Sets, Possibility Theory, and Application, Plenum Press, New York, 277-305.
http://dx.doi.org/10.1007/978-1-4613-3754-6_18
[3] Dubois, D. and Prade, H. (1983) Ranking Fuzzy Number in the Setting of Possibility Theory. Information Sciences, 3, 183-224.
http://dx.doi.org/10.1016/0020-0255(83)90025-7
[4] Prade, H. (1983) Fuzzy Programming: Why and How? Some Hints and Examples, in Advances in Fuzzy Sets, Possibility Theory and Application.
[5] Baruah, H.K. (1999) Set Superimposition and Its Application to the Theory of Fuzzy Sets. Journal of the Assam Science Society, 40, 25-31.
[6] Mazarbhuiya, F.A., Mahanta, A.K. and Baruah, H.K. (2003) Fuzzy Arithmetic without Using the Method of α-Cut. Bulletin of Pure and Applied Sciences, 22E, 45-54.
[7] Mazarbhuiya, F.A., Mahanta, A.K. and Baruah, H.K. (2011) Solution of the Fuzzy Equation A+X= B Using the Method of Superimposition. Applied Mathematics, 2, 1039-1045.
http://dx.doi.org/10.4236/am.2011.28144
[8] Mahanta, A.K., Mazarbhuiya, F.A. and Baruah, H.K. (2008) Finding Calendar-Based Periodic Patterns. Pattern Recognition Letters, 29, Elsevier Publication, USA, 1274-1284.
[9] Mazarbhuiya, F.A. and Abulaish, M. (2012) Clustering Periodic Patterns Using Fuzzy Statistical Parameters. International Journal of Innovative Computing Information and Control (IJICIC), 8, 2113-2124.
[10] Baruah, H.K. (2010) The Randomness—Fuzziness Consistency Principle. International Journal of Energy, Information and Communications, 1, 37-48.
[11] Baruah, H.K. (2012) An Introduction to the Theory of Imprecise Sets: The Mathematics of Partial Presence. Journal of Mathematical and Computational Science, 2, 110-124.
[12] Loeve, M. (1977) Probability Theory I. Springer Verlag, New York.