JQIS  Vol.4 No.2 , June 2014
Compatibility of Quantum Entanglement with the Special Theory of Relativity
Abstract: The Einstein-Podolsky-Rosen paradox is resolved dynamically by using spin-dependent quantum trajectories inferred from Dirac’s equation for a relativistic electron. The theory provides a practical computational methodology for studying entanglement versus disentanglement for realistic Hamiltonians.
Cite this paper: Ritchie, B. (2014) Compatibility of Quantum Entanglement with the Special Theory of Relativity. Journal of Quantum Information Science, 4, 92-96. doi: 10.4236/jqis.2014.42009.

[1]   Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777.

[2]   Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1, 195-200.

[3]   Freedman, S.J. and Clauser, J.F. (1972) Experimental Test of Local Hidden-Variable Theories. Physical Review Letters, 28, 938.

[4]   Dirac, P.A.M. (1928) The Quantum Theory of the Electron. Proceedings of the Royal Society (London), A117, 610-624.

[5]   Ritchie, B. (2011) Quantum molecular dynamics. International Journal of Quantum Chemistry, 111, 1-7.

[6]   Ritchie, B. and Weatherford, C.A. (2013) Quantum-Dynamical Theory of Electron Exchange Correlation. Advances in Physical Chemistry, 2013, Article ID: 497267.

[7]   James, H.M. and Coolidge, A.S. (1933) The Ground State of the Hydrogen Molecule. The Journal of Chemical Physics, 1, 825.