Back
 OJA  Vol.4 No.2 , June 2014
A Study on the Multiple Composite Piezoelectric Motor
Abstract: In this study, we major discuss a multiple composite piezoelectric motor. It is made by the base, the multiple composite piezoelectric stator and the preload adjusting module. The multiple composite piezoelectric stator is composed of the base, the first actuating element, the second actuating element and stator. The first actuating element is composed of the longitudinal and the first bending vibration modules, in which the first bending vibration module includes the horizontal and vertical bending vibration modules. And the second actuating element or bending vibration modules, wherein the second actuating element also includes the horizontal and vertical bending vibration modules. In addition, the preload adjusting module includes the limiting element, spring, washer and nut. In order to obtain the best vibration modes of the multiple composite piezoelectric motor, we use the ANSYS code to simulate. And so as to get the better performance and efficiency relate to the previous similar type’s motor under the same driving conditions, we try to use different vibration modules or modes to drive the multiple composite piezoelectric motor, including the longitudinal, the first bending, the second bending and the multiple vibration modules or modes by experiments. According to the results of the simulations and experiments, we found that the multiple composite piezoelectric motor has better rotational speed, loading ability and conversion efficiency of direction relate to the previous similar type’s motor. Where the maximum rotational speed multiple composite piezoelectric motor is up to 600 rpm under conditions of 180 Vp-p driving voltage, 37.8 kHz driving frequency, 00 driving phase angle and 12.1 gw loading. And the maximum loading ability is 2500 gw under conditions of 180 Vp-p driving voltage, 37.8 kHz driving frequency, 00 driving phase angle and 6rpm rotational speed.
Cite this paper: Jou, J. (2014) A Study on the Multiple Composite Piezoelectric Motor. Open Journal of Acoustics, 4, 55-69. doi: 10.4236/oja.2014.42006.
References

[1]   Ohnishi, O., Myohga, O., Uchikawa, T., Tamegai, M., Inoue, T. and Takahashi, S. (1989) Piezoelectric Ultrasonic Motor Using Longitudinal-Torsional Composite Vibration of a Cylindrical Resonator. IEEE 1989 Ultrasonics Symposium Proceedings, 2, 739-743. http://dx.doi.org/10.1109/ULTSYM.1989.67085

[2]   Takeoka, A., Ishikawa, A., Suzuki, M., Niki, K. and Kuwano, Y. (1989) Meissner Motor Using High-Tc Ceramic Superconductors. IEEE Transactions on Magnetics, 25, 2511-2514.

[3]   Ohnishi, O., Myohga, O., Uchikawa, T., Tamegai, M., Inoue, T. and Takahashi, S. (1993) Piezoelectric Ultrasonic Motor Using Longitudinal-Torsional Composite Resonance Vibration. IEEE Ultrasonics, Ferroelectrics, and Frequency Control, 40, 687-693.

[4]   Kawasaki, O., Nishikura, T., Sumihara, M., Ohtsuchi, T., Takeda, K., Nojima, T. and Imada, K. (1993) A Small Size Ultrasonic Motor. Systems, Man and Cybernetics, 1993. “Systems Engineering in the Service of Humans”, Conference Proceedings, International Conference, 1, 435-440.

[5]   Shigeki, T., Shigeru, S., Zhang, G.Q., Yasutaro, M. and Kazuto, N. (1994) Multi Degree of Freedom Spherical Ultrasonic Motor. Industrial Electronics, Control and Instrumentation, IECON '94., 20th International Conference, 2, 900-905.

[6]   Toyama, S., Sugitani, S., Zhang, G.Q., Miyatani, Y. and Nakamura, K. (1995) Multi Degree of Freedom Spherical Ultrasonic Motor. Robotics and Automation, 1 Proceedings, 1995 IEEE International Conference, 3, 2935-2940.

[7]   Kurosawa, M., Takahashi, M. and Higuchi, T. (1996) Ultrasonic Linear Motor Using Surface Acoustic Waves. IEEE Ultrasonics, Ferroelectrics, and Frequency Control, 43, 901-906.

[8]   Morita, T., Kurosawa, M. and Higuchi, T. (1997) A Cylindrical Micro Ultrasonic Motor Fabricated by Improved Hydrothermal Method. Solid State Sensors and Actuators, TRANSDUCERS '97 Chicago, International Conference, 1, 49-52.

[9]   Wakai, T., Kurosawa, M.K. and Higuchi, T. (1998) Transducer for an Ultrasonic Linear Motor with Flexible Driving Part. Ultrasonics Symposium, Proceedings, 1998 IEEE, 1, 683-686.

[10]   Li, C.D. and Zhao, C.S. (1998) A Large Thrust Linear Ultrasonic Motor Using Longitudinal and Flexural Modes of Rod-Shaped Transducer. Ultrasonics Symposium, 1998. Proceedings, IEEE, 1, 691-694.

[11]   Takemura, K. and Maeno, T. (2000) Characteristics of an Ultrasonic Motor Capable of Generating a Multi-Degrees of Freedom Motion. Robotics and Automation, Proceedings, ICRA '00. IEEE International Conference, 4, 3660-3665.

[12]   Nakamura, Y., Kurosawa, M.K., Shigematsu, T. and Asai, K. (2003) Effects of Ceramic Thin Film Coating on Friction Surfaces for Surface Acoustic Wave Linear Motor. Ultrasonics, 2003 IEEE Symposium, 2, 1766-1769.
http://dx.doi.org/10.1109/ULTSYM.2003.1293254

[13]   Guo, J.F., Gong, S.J., Guo, H.X., Liu, X. and Ji, K.H. (2004) Force Transfer Model and Characteristics of Hybrid Transducer Type Ultrasonic Motors. IEEE Ultrasonics, Ferroelectrics, and Frequency Control, 52, 387-395.

[14]   Leinvuo, J.T., Wilson, S.A., Whatmore, R.W. and Cain, M.G. (2006) Flextensional Ultrasonic Piezoelectric Micro-Motor. IEEE Ultrasonics, Ferroelectrics, and Frequency Control, 53, 2357-2366.

[15]   Shi, S.J., Chen, W.S. and Liu, J.K. (2006) A High Speed Ultrasonic Linear Motor Using Longitudinal and Bending Multimode Bolt-Clamped Langevin Type Transducer. Mechatronics and Automation, Proceedings of the 2006 IEEE International Conference, 612-617.

[16]   Luo, L.H., Zhu, H., Zhao, C.S., Wang, H.X. and Luo, H.S. (2007) Cylinder-Shaped Ultrasonic Motors 4.8 mm in Diameter Using Electroactive Piezoelectric Materials. Applied Physics Letters, 90, 052904-052904-3.

[17]   Kobayashi, A., Kanda, T. and Suzumori, K. (2007) Driving Performance of a Cylindrical Micro Ultrasonic Motor. Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference, 3809-3814.

[18]   Ichihara, T., Kanda, T. and Suzumori, K. (2008) Design and Evaluation of Low-Profile Micro Ultrasonic Motors Using Sector Shaped Piezoelectric Vibrators. Intelligent Robots and Systems, IROS 2008. IEEE/RSJ International Conference, 588-593.

[19]   Wajchman, D., Kuang-Chen Liu, Friend, J. and Yeo, L. (2008) An Ultrasonic Piezoelectric Motor Utilizing Axial-Torsional Coupling in a Pretwisted Non-Circular Cross-Sectioned Prismatic Beam. IEEE Ultrasonics, Ferroelectrics, and Frequency Control, 832-840.

[20]   Yao, Z.Y., Yang, D., Wu, X. and Zhao, C.S. (2008) Structure Design Method of Bar-Structure Linear Ultrasonic Motors. Ultrasonics Symposium, IUS 2008. IEEE, 639-642.

[21]   Sheng, M.W., Chen, W.S., Liu, J.K. and Shi, S.J. (2009) Study and Test of a Double-Rotor Ultrasonic Motor with Symmetrical Longitudinal-Torsional Converter. Applications of Ferroelectrics, ISAF 2009. 18th IEEE International Symposium, 1-4.

[22]   Chu, X.-C., Chen, X.-Y. and Li, L.-T. (2009) A Miniature Disk-Pivot Piezoelectric Motor with Double Rotors. Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) and 2009 China Symposium on Frequency Control Technology, Joint Conference of the 2009 Symposium, 107.

[23]   Chen, P.-H., Wang, Y. and Huang, W.-Q. (2009) Design of a New Type of Piezoelectric Linear Motor Base on Non-Resonant Vibration. Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA) and 2009 China Symposium on Frequency Control Technology, Joint Conference of the 2009 Symposium, 105.

[24]   Kondo, S., Koyama, D. and Nakamura, K. (2010) Miniaturization of the Traveling Wave Ultrasonic Linear Motor Using Bimorph Transducers. Ultrasonics Symposium (IUS), 2010 IEEE, 1482-1485.

[25]   Wang, Y., Jin, J.M. and Huang, W.Q. (2010) A Compact Ultrasonic Motor Using Two in Plane Modes. Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2010 Symposium, 171-174.

[26]   Qi, Z., Liang, P., Ting, M., Rang, K. and Hua, F. (2011) Piezoelectric Rotary Motor Based on Active Bulk Torsional Element With Grooved Helical Electrodes. Mechatronics, IEEE/ASME.

[27]   Liu, Y., Liu, J. and Chen, W. (2011) A Cylindrical Traveling Wave Ultrasonic Motor Using a Circumferential Composite Transducer. Ultrasonics, Ferroelectrics and Frequency Control, 58, 2397-2404.

[28]   He, S.Y., Chiarot, P.R. and Park, S. (2011) A Single Vibration Mode Tubular Piezoelectric Ultrasonic Motor. IEEE Ultrasonics, Ferroelectrics, and Frequency Control, 58, 1049-1061.

[29]   Liu, Y.X., Chen, W.S., Liu, J.K. and Shi, S.J. (2011) A High-Power Linear Ultrasonic Motor Using Longitudinal Vibration Transducers with Single Foot. Ultrasonics, Ferroelectrics and Frequency Control, 57, 1860-1867.

[30]   Jou, J.-M. (2011) A Study on the Multi-Block Piezoelectric Car. 2011 International Symposium on Mechatronic and Biomedical Engineering & Applications, 123-128.

[31]   Jou, J.-M. (2013) A Study on the Rod Type Ultrasonic Motor. Advanced Materials Research, 716, 600-607.

[32]   Jou, J.-M. (2013) A Study on the Piezoelectric Motor of High Actuating Force. Life Science Journal, 10, 242-248.

[33]   Jou, J.-M. (2013) A Study on the Composite Type Piezoelectric Motor. Open Journal of Acoustics, 3, 88-95.
http://dx.doi.org/10.4236/oja.2013.33014

 
 
Top